aws-bootstrap-g4dn 0.3.0__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
aws_bootstrap/cli.py CHANGED
@@ -277,7 +277,7 @@ def launch(
277
277
  click.echo()
278
278
  click.secho(" VSCode Remote SSH:", fg="cyan")
279
279
  click.secho(
280
- f" code --folder-uri vscode-remote://ssh-remote+{alias}/home/{config.ssh_user}",
280
+ f" code --folder-uri vscode-remote://ssh-remote+{alias}/home/{config.ssh_user}/workspace",
281
281
  bold=True,
282
282
  )
283
283
 
@@ -410,7 +410,7 @@ def status(region, profile, gpu, instructions):
410
410
 
411
411
  click.secho(" VSCode Remote SSH:", fg="cyan")
412
412
  click.secho(
413
- f" code --folder-uri vscode-remote://ssh-remote+{alias}/home/{user}",
413
+ f" code --folder-uri vscode-remote://ssh-remote+{alias}/home/{user}/workspace",
414
414
  bold=True,
415
415
  )
416
416
 
@@ -628,7 +628,9 @@ def configure_precision(device: torch.device, requested: PrecisionMode) -> Preci
628
628
  return PrecisionMode.FP32
629
629
 
630
630
 
631
- def print_system_info(requested_precision: PrecisionMode) -> tuple[torch.device, PrecisionMode]:
631
+ def print_system_info(
632
+ requested_precision: PrecisionMode, force_cpu: bool = False
633
+ ) -> tuple[torch.device, PrecisionMode]:
632
634
  """Print system and CUDA information, return device and actual precision mode."""
633
635
  print("\n" + "=" * 60)
634
636
  print("System Information")
@@ -636,7 +638,7 @@ def print_system_info(requested_precision: PrecisionMode) -> tuple[torch.device,
636
638
  print(f"PyTorch version: {torch.__version__}")
637
639
  print(f"Python version: {sys.version.split()[0]}")
638
640
 
639
- if torch.cuda.is_available():
641
+ if torch.cuda.is_available() and not force_cpu:
640
642
  device = torch.device("cuda")
641
643
  print("CUDA available: Yes")
642
644
  print(f"CUDA version: {torch.version.cuda}")
@@ -666,8 +668,11 @@ def print_system_info(requested_precision: PrecisionMode) -> tuple[torch.device,
666
668
  else:
667
669
  device = torch.device("cpu")
668
670
  actual_precision = PrecisionMode.FP32
669
- print("CUDA available: No (running on CPU)")
670
- print("WARNING: GPU benchmark results will not be representative!")
671
+ if force_cpu:
672
+ print("CPU-only mode requested (--cpu flag)")
673
+ else:
674
+ print("CUDA available: No (running on CPU)")
675
+ print("Running on CPU for benchmarking")
671
676
 
672
677
  print("=" * 60)
673
678
  return device, actual_precision
@@ -724,10 +729,15 @@ def main() -> None:
724
729
  action="store_true",
725
730
  help="Run CUDA/cuBLAS diagnostic tests before benchmarking",
726
731
  )
732
+ parser.add_argument(
733
+ "--cpu",
734
+ action="store_true",
735
+ help="Force CPU-only execution (for CPU vs GPU comparison)",
736
+ )
727
737
  args = parser.parse_args()
728
738
 
729
739
  requested_precision = PrecisionMode(args.precision)
730
- device, actual_precision = print_system_info(requested_precision)
740
+ device, actual_precision = print_system_info(requested_precision, force_cpu=args.cpu)
731
741
 
732
742
  # Run diagnostics if requested
733
743
  if args.diagnose:
@@ -0,0 +1,42 @@
1
+ {
2
+ // CUDA debug configurations for VSCode
3
+ // Deployed to: ~/workspace/.vscode/launch.json
4
+ //
5
+ // Usage: Open any .cu file, press F5 to build and debug
6
+ "version": "0.2.0",
7
+ "configurations": [
8
+ {
9
+ "name": "CUDA: Build and Debug Active File",
10
+ "type": "cuda-gdb",
11
+ "request": "launch",
12
+ "program": "${fileDirname}/${fileBasenameNoExtension}",
13
+ "args": [],
14
+ "cwd": "${fileDirname}",
15
+ "miDebuggerPath": "__CUDA_GDB_PATH__",
16
+ "stopAtEntry": false,
17
+ "preLaunchTask": "nvcc: build active file (debug)"
18
+ },
19
+ {
20
+ "name": "CUDA: Build and Debug (stop at main)",
21
+ "type": "cuda-gdb",
22
+ "request": "launch",
23
+ "program": "${fileDirname}/${fileBasenameNoExtension}",
24
+ "args": [],
25
+ "cwd": "${fileDirname}",
26
+ "miDebuggerPath": "__CUDA_GDB_PATH__",
27
+ "stopAtEntry": true,
28
+ "preLaunchTask": "nvcc: build active file (debug)"
29
+ },
30
+ {
31
+ "name": "CUDA: Run Active File (no debug)",
32
+ "type": "cuda-gdb",
33
+ "request": "launch",
34
+ "program": "${fileDirname}/${fileBasenameNoExtension}",
35
+ "args": [],
36
+ "cwd": "${fileDirname}",
37
+ "miDebuggerPath": "__CUDA_GDB_PATH__",
38
+ "stopAtEntry": false,
39
+ "preLaunchTask": "nvcc: build active file (release)"
40
+ }
41
+ ]
42
+ }
@@ -7,7 +7,7 @@ echo "=== aws-bootstrap-g4dn remote setup ==="
7
7
 
8
8
  # 1. Verify GPU
9
9
  echo ""
10
- echo "[1/5] Verifying GPU and CUDA..."
10
+ echo "[1/6] Verifying GPU and CUDA..."
11
11
  if command -v nvidia-smi &>/dev/null; then
12
12
  nvidia-smi --query-gpu=name,driver_version,memory.total --format=csv,noheader
13
13
  else
@@ -20,15 +20,40 @@ else
20
20
  echo "WARNING: nvcc not found (CUDA toolkit may not be installed)"
21
21
  fi
22
22
 
23
+ # Make Nsight Systems (nsys) available on PATH if installed under /opt/nvidia
24
+ if ! command -v nsys &>/dev/null; then
25
+ NSIGHT_DIR="/opt/nvidia/nsight-systems"
26
+ if [ -d "$NSIGHT_DIR" ]; then
27
+ # Fix permissions — the parent dir is often root-only (drwx------)
28
+ sudo chmod o+rx "$NSIGHT_DIR"
29
+ # Find the latest version directory (lexicographic sort)
30
+ NSYS_VERSION=$(ls -1 "$NSIGHT_DIR" | sort -V | tail -1)
31
+ if [ -n "$NSYS_VERSION" ] && [ -x "$NSIGHT_DIR/$NSYS_VERSION/bin/nsys" ]; then
32
+ NSYS_BIN="$NSIGHT_DIR/$NSYS_VERSION/bin"
33
+ if ! grep -q "nsight-systems" ~/.bashrc 2>/dev/null; then
34
+ echo "export PATH=\"$NSYS_BIN:\$PATH\"" >> ~/.bashrc
35
+ fi
36
+ export PATH="$NSYS_BIN:$PATH"
37
+ echo " Nsight Systems $NSYS_VERSION added to PATH ($NSYS_BIN)"
38
+ else
39
+ echo " WARNING: Nsight Systems directory found but no nsys binary"
40
+ fi
41
+ else
42
+ echo " Nsight Systems not found at $NSIGHT_DIR"
43
+ fi
44
+ else
45
+ echo " nsys already on PATH: $(command -v nsys)"
46
+ fi
47
+
23
48
  # 2. Install utilities
24
49
  echo ""
25
- echo "[2/5] Installing utilities..."
50
+ echo "[2/6] Installing utilities..."
26
51
  sudo apt-get update -qq
27
52
  sudo apt-get install -y -qq htop tmux tree jq
28
53
 
29
54
  # 3. Set up Python environment with uv
30
55
  echo ""
31
- echo "[3/5] Setting up Python environment with uv..."
56
+ echo "[3/6] Setting up Python environment with uv..."
32
57
  if ! command -v uv &>/dev/null; then
33
58
  curl -LsSf https://astral.sh/uv/install.sh | sh
34
59
  fi
@@ -153,7 +178,7 @@ echo " Jupyter config written to $JUPYTER_CONFIG_DIR/jupyter_lab_config.py"
153
178
 
154
179
  # 4. Jupyter systemd service
155
180
  echo ""
156
- echo "[4/5] Setting up Jupyter systemd service..."
181
+ echo "[4/6] Setting up Jupyter systemd service..."
157
182
  LOGIN_USER=$(whoami)
158
183
 
159
184
  sudo tee /etc/systemd/system/jupyter.service > /dev/null << SVCEOF
@@ -180,7 +205,7 @@ echo " Jupyter service started (port 8888)"
180
205
 
181
206
  # 5. SSH keepalive
182
207
  echo ""
183
- echo "[5/5] Configuring SSH keepalive..."
208
+ echo "[5/6] Configuring SSH keepalive..."
184
209
  if ! grep -q "ClientAliveInterval" /etc/ssh/sshd_config; then
185
210
  echo "ClientAliveInterval 60" | sudo tee -a /etc/ssh/sshd_config > /dev/null
186
211
  echo "ClientAliveCountMax 10" | sudo tee -a /etc/ssh/sshd_config > /dev/null
@@ -190,5 +215,58 @@ else
190
215
  echo " SSH keepalive already configured"
191
216
  fi
192
217
 
218
+ # 6. VSCode workspace setup
219
+ echo ""
220
+ echo "[6/6] Setting up VSCode workspace..."
221
+ mkdir -p ~/workspace/.vscode
222
+
223
+ # Detect cuda-gdb path
224
+ CUDA_GDB_PATH=""
225
+ if command -v cuda-gdb &>/dev/null; then
226
+ CUDA_GDB_PATH=$(command -v cuda-gdb)
227
+ elif [ -x /usr/local/cuda/bin/cuda-gdb ]; then
228
+ CUDA_GDB_PATH="/usr/local/cuda/bin/cuda-gdb"
229
+ else
230
+ # Try glob for versioned CUDA installs
231
+ for p in /usr/local/cuda-*/bin/cuda-gdb; do
232
+ if [ -x "$p" ]; then
233
+ CUDA_GDB_PATH="$p"
234
+ fi
235
+ done
236
+ fi
237
+ if [ -z "$CUDA_GDB_PATH" ]; then
238
+ echo " WARNING: cuda-gdb not found — using placeholder in launch.json"
239
+ CUDA_GDB_PATH="cuda-gdb"
240
+ else
241
+ echo " cuda-gdb: $CUDA_GDB_PATH"
242
+ fi
243
+
244
+ # Detect GPU SM architecture
245
+ GPU_ARCH=""
246
+ if command -v nvidia-smi &>/dev/null; then
247
+ COMPUTE_CAP=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader 2>/dev/null | head -1 | tr -d '[:space:]')
248
+ if [ -n "$COMPUTE_CAP" ]; then
249
+ GPU_ARCH="sm_$(echo "$COMPUTE_CAP" | tr -d '.')"
250
+ fi
251
+ fi
252
+ if [ -z "$GPU_ARCH" ]; then
253
+ echo " WARNING: Could not detect GPU arch — defaulting to sm_75"
254
+ GPU_ARCH="sm_75"
255
+ else
256
+ echo " GPU arch: $GPU_ARCH"
257
+ fi
258
+
259
+ # Copy example CUDA source into workspace
260
+ cp /tmp/saxpy.cu ~/workspace/saxpy.cu
261
+ echo " Deployed saxpy.cu"
262
+
263
+ # Deploy launch.json with cuda-gdb path
264
+ sed "s|__CUDA_GDB_PATH__|${CUDA_GDB_PATH}|g" /tmp/launch.json > ~/workspace/.vscode/launch.json
265
+ echo " Deployed launch.json"
266
+
267
+ # Deploy tasks.json with GPU architecture
268
+ sed "s|__GPU_ARCH__|${GPU_ARCH}|g" /tmp/tasks.json > ~/workspace/.vscode/tasks.json
269
+ echo " Deployed tasks.json"
270
+
193
271
  echo ""
194
272
  echo "=== Remote setup complete ==="
@@ -0,0 +1,49 @@
1
+ /**
2
+ * SAXPY Example, CUDA Style
3
+ * Source: https://developer.nvidia.com/blog/easy-introduction-cuda-c-and-c/
4
+ *
5
+ * This is included as an example CUDA C++ source file to try out the VS Code launch configuration we include on the host machine.
6
+ *
7
+ */
8
+ #include <stdio.h>
9
+
10
+ __global__
11
+ void saxpy(int n, float a, float *x, float *y)
12
+ {
13
+ int i = blockIdx.x*blockDim.x + threadIdx.x;
14
+ if (i < n) y[i] = a*x[i] + y[i];
15
+ }
16
+
17
+ int main(void)
18
+ {
19
+ int N = 1<<20;
20
+ float *x, *y, *d_x, *d_y;
21
+ x = (float*)malloc(N*sizeof(float));
22
+ y = (float*)malloc(N*sizeof(float));
23
+
24
+ cudaMalloc(&d_x, N*sizeof(float));
25
+ cudaMalloc(&d_y, N*sizeof(float));
26
+
27
+ for (int i = 0; i < N; i++) {
28
+ x[i] = 1.0f;
29
+ y[i] = 2.0f;
30
+ }
31
+
32
+ cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
33
+ cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);
34
+
35
+ // Perform SAXPY on 1M elements
36
+ saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
37
+
38
+ cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);
39
+
40
+ float maxError = 0.0f;
41
+ for (int i = 0; i < N; i++)
42
+ maxError = max(maxError, abs(y[i]-4.0f));
43
+ printf("Max error: %f\n", maxError);
44
+
45
+ cudaFree(d_x);
46
+ cudaFree(d_y);
47
+ free(x);
48
+ free(y);
49
+ }
@@ -0,0 +1,48 @@
1
+ {
2
+ // CUDA build tasks for VSCode
3
+ // Deployed to: ~/workspace/.vscode/tasks.json
4
+ "version": "2.0.0",
5
+ "tasks": [
6
+ {
7
+ "label": "nvcc: build active file (debug)",
8
+ "type": "shell",
9
+ "command": "nvcc",
10
+ "args": [
11
+ "-g", // Host debug symbols
12
+ "-G", // Device (GPU) debug symbols
13
+ "-O0", // No optimization
14
+ "-arch=__GPU_ARCH__", // GPU arch (auto-detected)
15
+ "-o",
16
+ "${fileDirname}/${fileBasenameNoExtension}",
17
+ "${file}"
18
+ ],
19
+ "options": {
20
+ "cwd": "${fileDirname}"
21
+ },
22
+ "problemMatcher": ["$nvcc"],
23
+ "group": {
24
+ "kind": "build",
25
+ "isDefault": true
26
+ },
27
+ "detail": "Compile active .cu file with debug symbols (-g -G)"
28
+ },
29
+ {
30
+ "label": "nvcc: build active file (release)",
31
+ "type": "shell",
32
+ "command": "nvcc",
33
+ "args": [
34
+ "-O3",
35
+ "-arch=__GPU_ARCH__",
36
+ "-o",
37
+ "${fileDirname}/${fileBasenameNoExtension}",
38
+ "${file}"
39
+ ],
40
+ "options": {
41
+ "cwd": "${fileDirname}"
42
+ },
43
+ "problemMatcher": ["$nvcc"],
44
+ "group": "build",
45
+ "detail": "Compile active .cu file optimized (no debug)"
46
+ }
47
+ ]
48
+ }
aws_bootstrap/ssh.py CHANGED
@@ -159,6 +159,42 @@ def run_remote_setup(
159
159
  click.secho(f" SCP failed: {nb_result.stderr}", fg="red", err=True)
160
160
  return False
161
161
 
162
+ # SCP the CUDA example source
163
+ saxpy_path = script_path.parent / "saxpy.cu"
164
+ click.echo(" Uploading saxpy.cu...")
165
+ saxpy_result = subprocess.run(
166
+ ["scp", *ssh_opts, *scp_port_opts, str(saxpy_path), f"{user}@{host}:/tmp/saxpy.cu"],
167
+ capture_output=True,
168
+ text=True,
169
+ )
170
+ if saxpy_result.returncode != 0:
171
+ click.secho(f" SCP failed: {saxpy_result.stderr}", fg="red", err=True)
172
+ return False
173
+
174
+ # SCP the VSCode launch.json
175
+ launch_json_path = script_path.parent / "launch.json"
176
+ click.echo(" Uploading launch.json...")
177
+ launch_result = subprocess.run(
178
+ ["scp", *ssh_opts, *scp_port_opts, str(launch_json_path), f"{user}@{host}:/tmp/launch.json"],
179
+ capture_output=True,
180
+ text=True,
181
+ )
182
+ if launch_result.returncode != 0:
183
+ click.secho(f" SCP failed: {launch_result.stderr}", fg="red", err=True)
184
+ return False
185
+
186
+ # SCP the VSCode tasks.json
187
+ tasks_json_path = script_path.parent / "tasks.json"
188
+ click.echo(" Uploading tasks.json...")
189
+ tasks_result = subprocess.run(
190
+ ["scp", *ssh_opts, *scp_port_opts, str(tasks_json_path), f"{user}@{host}:/tmp/tasks.json"],
191
+ capture_output=True,
192
+ text=True,
193
+ )
194
+ if tasks_result.returncode != 0:
195
+ click.secho(f" SCP failed: {tasks_result.stderr}", fg="red", err=True)
196
+ return False
197
+
162
198
  # SCP the script
163
199
  click.echo(" Uploading remote_setup.sh...")
164
200
  scp_result = subprocess.run(
@@ -565,7 +565,7 @@ def test_status_instructions_shown_by_default(mock_find, mock_spot, mock_session
565
565
  assert result.exit_code == 0
566
566
  assert "ssh aws-gpu1" in result.output
567
567
  assert "ssh -NL 8888:localhost:8888 aws-gpu1" in result.output
568
- assert "vscode-remote://ssh-remote+aws-gpu1/home/ubuntu" in result.output
568
+ assert "vscode-remote://ssh-remote+aws-gpu1/home/ubuntu/workspace" in result.output
569
569
  assert "python ~/gpu_benchmark.py" in result.output
570
570
 
571
571
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aws-bootstrap-g4dn
3
- Version: 0.3.0
3
+ Version: 0.4.0
4
4
  Summary: Bootstrap AWS EC2 GPU instances for hybrid local-remote development
5
5
  Author: Adam Ever-Hadani
6
6
  License-Expression: MIT
@@ -49,7 +49,7 @@ ssh aws-gpu1 # You're in, venv activated, PyTorch works
49
49
  ### 🎯 Target Workflows
50
50
 
51
51
  1. **Jupyter server-client** — Jupyter runs on the instance, connect from your local browser
52
- 2. **VSCode Remote SSH** — `ssh aws-gpu1` just works with the Remote SSH extension
52
+ 2. **VSCode Remote SSH** — opens `~/workspace` with pre-configured CUDA debug/build tasks and an example `.cu` file
53
53
  3. **NVIDIA Nsight remote debugging** — GPU debugging over SSH
54
54
 
55
55
  ---
@@ -162,6 +162,7 @@ The setup script runs automatically on the instance after SSH becomes available:
162
162
  | **GPU smoke test notebook** | Copies `gpu_smoke_test.ipynb` to `~/gpu_smoke_test.ipynb` (open in JupyterLab) |
163
163
  | **Jupyter** | Configures and starts JupyterLab as a systemd service on port 8888 |
164
164
  | **SSH keepalive** | Configures server-side keepalive to prevent idle disconnects |
165
+ | **VSCode workspace** | Creates `~/workspace/.vscode/` with `launch.json` and `tasks.json` (auto-detected `cuda-gdb` path and GPU arch), plus an example `saxpy.cu` |
165
166
 
166
167
  ### 📊 GPU Benchmark
167
168
 
@@ -200,6 +201,28 @@ ssh -i ~/.ssh/id_ed25519 -NL 8888:localhost:8888 ubuntu@<public-ip>
200
201
 
201
202
  A **GPU smoke test notebook** (`~/gpu_smoke_test.ipynb`) is pre-installed on every instance. Open it in JupyterLab to interactively verify the CUDA stack, run FP32/FP16 matmuls, train a small CNN on MNIST, and visualise training loss and GPU memory usage.
202
203
 
204
+ ### 🖥️ VSCode Remote SSH
205
+
206
+ The remote setup creates a `~/workspace` folder with pre-configured CUDA debug and build tasks:
207
+
208
+ ```
209
+ ~/workspace/
210
+ ├── .vscode/
211
+ │ ├── launch.json # CUDA debug configs (cuda-gdb path auto-detected)
212
+ │ └── tasks.json # nvcc build tasks (GPU arch auto-detected, e.g. sm_75)
213
+ └── saxpy.cu # Example CUDA source — open and press F5 to debug
214
+ ```
215
+
216
+ Connect directly from your terminal:
217
+
218
+ ```bash
219
+ code --folder-uri vscode-remote://ssh-remote+aws-gpu1/home/ubuntu/workspace
220
+ ```
221
+
222
+ Then install the [Nsight VSCE extension](https://marketplace.visualstudio.com/items?itemName=NVIDIA.nsight-vscode-edition) on the remote when prompted. Open `saxpy.cu`, set a breakpoint, and press F5.
223
+
224
+ See [Nsight remote profiling guide](docs/nsight-remote-profiling.md) for more details on CUDA debugging and profiling workflows.
225
+
203
226
  ### 📋 Listing Resources
204
227
 
205
228
  ```bash
@@ -322,7 +345,7 @@ aws-bootstrap launch --instance-type t3.medium --ami-filter "ubuntu/images/hvm-s
322
345
  | GPU instance pricing | [instances.vantage.sh](https://instances.vantage.sh/aws/ec2/g4dn.xlarge) |
323
346
  | Spot instance quotas | [AWS docs](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-limits.html) |
324
347
  | Deep Learning AMIs | [AWS docs](https://docs.aws.amazon.com/dlami/latest/devguide/what-is-dlami.html) |
325
- | Nvidia Nsight remote debugging | [Nvidia docs](https://docs.nvidia.com/nsight-visual-studio-edition/3.2/Content/Setup_Remote_Debugging.htm) |
348
+ | Nsight remote GPU profiling | [Guide](docs/nsight-remote-profiling.md) — Nsight Compute, Nsight Systems, and Nsight VSCE on EC2 |
326
349
 
327
350
  Tutorials on setting up a CUDA environment on EC2 GPU instances:
328
351
 
@@ -1,24 +1,27 @@
1
1
  aws_bootstrap/__init__.py,sha256=kl_jvrunGyIyizdRqAP6ROb5P1BBrXX5PTq5gq1ipU0,82
2
- aws_bootstrap/cli.py,sha256=H7Lud1PWk0O5zKGf1StARCEahrMErickuHXsWk42j3A,20481
2
+ aws_bootstrap/cli.py,sha256=XqCKxyc294krVtggrsqm2cYrHR6DWaqQeuzrRAN5u_c,20501
3
3
  aws_bootstrap/config.py,sha256=TeCOYDlijT-KD5SFIzc-VvBhOqcq9YCgen9NK63rka8,895
4
4
  aws_bootstrap/ec2.py,sha256=LHpzW91ayK45gsWV_B4LanSZIhWggqTsL31qHUceiaA,12274
5
5
  aws_bootstrap/gpu.py,sha256=WTnHR0s3mQHDlnzqRgqAC6omWz7nT5YtGpcs0Bf88jk,692
6
- aws_bootstrap/ssh.py,sha256=RK5Ahiwpol9-4MUvurKyNa1JorQW9VkkNtSSfPzryrU,17851
6
+ aws_bootstrap/ssh.py,sha256=UFRDgNR8cljV-lwMvCy_BAJQBz7gj4a_cQIulf-2A10,19226
7
7
  aws_bootstrap/resources/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- aws_bootstrap/resources/gpu_benchmark.py,sha256=2uoss2bZGhg7c3D7Hg1-EJlOVDtzAH4co1ahSvF_lVU,29080
8
+ aws_bootstrap/resources/gpu_benchmark.py,sha256=1eFt_3MXvoLhs9HahrRPhbxvtdjFaXG2Ty3GEg7Gud0,29366
9
9
  aws_bootstrap/resources/gpu_smoke_test.ipynb,sha256=XvAOEIPa5H9ri5mRZqOdknmwOwKNvCME6DzBGuhRYfg,10698
10
- aws_bootstrap/resources/remote_setup.sh,sha256=n1joNO-6EizLsz2BPOPruFhe90kEQ9Np2SBhYXnOJRs,5648
10
+ aws_bootstrap/resources/launch.json,sha256=ZOcvHLy3-zBOqRTtFzuyn-_2tB64yuEn8PrJOoZ-PgE,1484
11
+ aws_bootstrap/resources/remote_setup.sh,sha256=z_YGdzwEHWInkE3dZVbBNa0F_joTeVhnOpCYOj1CK30,8331
11
12
  aws_bootstrap/resources/requirements.txt,sha256=gpYl1MFCfWXiAhbIUgAjuTHONz3MKci25msIyOkMmUk,75
13
+ aws_bootstrap/resources/saxpy.cu,sha256=1BSESEwGGCx3KWx9ZJ8jiPHQ42KzQN6i2aP0I28bPsA,1178
14
+ aws_bootstrap/resources/tasks.json,sha256=6U8pB1N8YIWgUCfFet4ne3nYnI92tWv5D5kPiQG3Zlg,1576
12
15
  aws_bootstrap/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- aws_bootstrap/tests/test_cli.py,sha256=vyoVVqSakC7Y2BCEFpyf2ghTUvT-QWBQC9-yvEFz3gw,32554
16
+ aws_bootstrap/tests/test_cli.py,sha256=Lwzpdovq_iJFB6qZ8NuySqzHFkQ_2Q8AAGXdITXi1Vo,32564
14
17
  aws_bootstrap/tests/test_config.py,sha256=arvET6KNl4Vqsz0zFrSdhciXGU688bfsvCr3dSpziN0,1050
15
18
  aws_bootstrap/tests/test_ec2.py,sha256=Jmqsjv973hxXbZWfGgECtm6aa2156Lzji227sYMBuMg,10547
16
19
  aws_bootstrap/tests/test_gpu.py,sha256=rbMuda_sIVbaCzkWXoLv9YIfnWztgRoP7NuVL8XHrUY,3871
17
20
  aws_bootstrap/tests/test_ssh_config.py,sha256=iQDd3hJ8to-2-QHW26Brtglfl0q0P6sCE6U_itxoNyY,11609
18
21
  aws_bootstrap/tests/test_ssh_gpu.py,sha256=dRp86Og-8GqiATSff3rxhu83mBZdGgqI4UOnoC00Ln0,1454
19
- aws_bootstrap_g4dn-0.3.0.dist-info/licenses/LICENSE,sha256=Hen77Mt8sazSQJ9DgrmZuAvDwo2vc5JAkR_avuFV-CM,1067
20
- aws_bootstrap_g4dn-0.3.0.dist-info/METADATA,sha256=tfsBYTSqVQf8A46P22qwdFsb_ur-Ge57hQfuDaj0mgE,12417
21
- aws_bootstrap_g4dn-0.3.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
22
- aws_bootstrap_g4dn-0.3.0.dist-info/entry_points.txt,sha256=T8FXfOgmLEvFi8DHaFJ3tCzId9J3_d2Y6qT98OXxCjA,57
23
- aws_bootstrap_g4dn-0.3.0.dist-info/top_level.txt,sha256=mix9gZRs8JUv0OMSB_rwdGcRnTKzsKgHrE5fyAn5zJw,14
24
- aws_bootstrap_g4dn-0.3.0.dist-info/RECORD,,
22
+ aws_bootstrap_g4dn-0.4.0.dist-info/licenses/LICENSE,sha256=Hen77Mt8sazSQJ9DgrmZuAvDwo2vc5JAkR_avuFV-CM,1067
23
+ aws_bootstrap_g4dn-0.4.0.dist-info/METADATA,sha256=0OQsG5kVwsbfT7dfaZoNrkOlfNRUrKr9NwljtLBKj1I,13483
24
+ aws_bootstrap_g4dn-0.4.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
25
+ aws_bootstrap_g4dn-0.4.0.dist-info/entry_points.txt,sha256=T8FXfOgmLEvFi8DHaFJ3tCzId9J3_d2Y6qT98OXxCjA,57
26
+ aws_bootstrap_g4dn-0.4.0.dist-info/top_level.txt,sha256=mix9gZRs8JUv0OMSB_rwdGcRnTKzsKgHrE5fyAn5zJw,14
27
+ aws_bootstrap_g4dn-0.4.0.dist-info/RECORD,,