autoregressive-language-model-generate 0.1.0a0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,66 @@
1
+ Metadata-Version: 2.4
2
+ Name: autoregressive-language-model-generate
3
+ Version: 0.1.0a0
4
+ Summary: A generator-based, stateless autoregressive inference loop for language models compatible with HuggingFace's Transformers API.
5
+ Author-email: Jifeng Wu <jifengwu2k@gmail.com>
6
+ License-Expression: MIT
7
+ Project-URL: Homepage, https://github.com/jifengwu2k/autoregressive-language-model-generate
8
+ Project-URL: Bug Tracker, https://github.com/jifengwu2k/autoregressive-language-model-generate/issues
9
+ Classifier: Programming Language :: Python :: 2
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Operating System :: OS Independent
12
+ Requires-Python: >=2
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
15
+ Requires-Dist: torch
16
+ Requires-Dist: typing; python_version < "3.5"
17
+ Dynamic: license-file
18
+
19
+ # `autoregressive-language-model-generate`
20
+
21
+ A generator-based, stateless autoregressive inference loop for language models compatible with HuggingFace's Transformers API. At each step, it yields logits from the model and expects the caller to send back the predicted next tokens. Easily integrates into custom sampling strategies (greedy, beam, top-k/p, etc).
22
+
23
+ ## Usage
24
+
25
+ Assume you have:
26
+
27
+ - `model`
28
+ - `input_ids` and `attention_mask`, shape `(batch_size, seq_len)`
29
+
30
+ ```python
31
+ import torch
32
+ from autoregressive_language_model_generate import autoregressive_language_model_generate
33
+
34
+ model = ...
35
+ input_ids = ...
36
+ attention_mask = ...
37
+
38
+ gen = autoregressive_language_model_generate(
39
+ model,
40
+ input_ids,
41
+ attention_mask
42
+ )
43
+
44
+ logits = next(gen)
45
+
46
+ # Implement your sampling logic here
47
+ next_token_logits = logits[:, -1, :]
48
+ top_k = 50
49
+ indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
50
+ next_token_scores = next_token_logits.masked_fill(indices_to_remove, -float('Inf'))
51
+ probs = torch.nn.functional.softmax(next_token_scores, dim=-1)
52
+
53
+ # `next_tokens` has shape `(batch_size,)`
54
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
55
+
56
+ # Send `next_tokens` to generator, receive `logits`
57
+ logits = gen.send(next_tokens)
58
+ ```
59
+
60
+ ## Contributing
61
+
62
+ Contributions are welcome! Please submit pull requests or open issues on the GitHub repository.
63
+
64
+ ## License
65
+
66
+ This project is licensed under the [MIT License](LICENSE).
@@ -0,0 +1,6 @@
1
+ autoregressive_language_model_generate.py,sha256=Rmw96uGVuaF1WujlbQTwzBo2gBR9NuAYnuxNxkEsSQA,2164
2
+ autoregressive_language_model_generate-0.1.0a0.dist-info/licenses/LICENSE,sha256=hvfX-ADssuMYgrXDUAjMMut4l8W3meA31ZAYfpdlJKY,1066
3
+ autoregressive_language_model_generate-0.1.0a0.dist-info/METADATA,sha256=y3hiny3mNOEwbhULoGXDjPFnt5-3eCTtrxgU7bp4rmU,2254
4
+ autoregressive_language_model_generate-0.1.0a0.dist-info/WHEEL,sha256=Q6xS052dXadQWXcEVKSI037R6NoyqhUlJ5BcYz2iMP4,110
5
+ autoregressive_language_model_generate-0.1.0a0.dist-info/top_level.txt,sha256=aUG3Zpl9vhYtzmVk7BvZc0vOJYy4_SMPwDdFBwQG2hM,39
6
+ autoregressive_language_model_generate-0.1.0a0.dist-info/RECORD,,
@@ -0,0 +1,6 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py2-none-any
5
+ Tag: py3-none-any
6
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Jifeng Wu
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ autoregressive_language_model_generate
@@ -0,0 +1,53 @@
1
+ # Copyright (c) 2026 Jifeng Wu
2
+ # Licensed under the MIT License. See LICENSE file in the project root for full license information.
3
+ from typing import Generator
4
+ import torch
5
+
6
+
7
+ @torch.no_grad()
8
+ def autoregressive_language_model_generate(
9
+ model, # type: torch.nn.Module
10
+ input_ids, # type: torch.LongTensor
11
+ attention_mask, # type: torch.BoolTensor
12
+ ):
13
+ # type: (...) -> Generator[torch.Tensor, torch.Tensor, None]
14
+ """
15
+ A generator-based, stateless autoregressive inference loop for language models compatible with HuggingFace's Transformers API. At each step, it yields logits from the model and expects the caller to send back the predicted next tokens. Easily integrates into custom sampling strategies (greedy, beam, top-k/p, etc).
16
+
17
+ Args:
18
+ `model` (`torch.nn.Module`): A language model compatible with HuggingFace's Transformers API. Must accept `input_ids`, `attention_mask`, and `position_ids`.
19
+ `input_ids` (`torch.LongTensor`): Token indices to start generation. Shape `(batch_size, seq_len)`.
20
+ `attention_mask` (`torch.BoolTensor`): Attention mask indicating which indices are valid input (1) vs padding (0). Shape `(batch_size, seq_len)`.
21
+
22
+ Yields:
23
+ `torch.FloatTensor`: Logits from the model for next token prediction. Shape `(batch_size, seq_len, vocab_size)`.
24
+
25
+ Note:
26
+ The caller is responsible for sending back the predicted next tokens. Shape `(batch_size,)`.
27
+ """
28
+ while True:
29
+ # Fully recompute position_ids for new length
30
+ position_ids = attention_mask.long().cumsum(-1) - 1
31
+ position_ids.masked_fill_(attention_mask == 0, 1)
32
+
33
+ logits = model(
34
+ input_ids=input_ids,
35
+ attention_mask=attention_mask,
36
+ position_ids=position_ids,
37
+ )
38
+
39
+ next_tokens = yield logits
40
+
41
+ input_ids = torch.cat(
42
+ [input_ids, next_tokens[:, None]],
43
+ dim=-1
44
+ )
45
+ attention_mask = torch.cat(
46
+ [
47
+ attention_mask,
48
+ attention_mask.new_ones(
49
+ (attention_mask.shape[0], 1)
50
+ )
51
+ ],
52
+ dim=-1
53
+ )