autogluon 1.1.2b20240920__py3-none-any.whl → 1.4.1b20251208__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon-1.4.1b20251208-py3.11-nspkg.pth +1 -0
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info}/METADATA +42 -23
- autogluon-1.4.1b20251208.dist-info/RECORD +10 -0
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info}/WHEEL +1 -1
- autogluon-1.1.2b20240920-py3.8-nspkg.pth +0 -1
- autogluon-1.1.2b20240920.dist-info/RECORD +0 -10
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info/licenses}/LICENSE +0 -0
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info/licenses}/NOTICE +0 -0
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info}/namespace_packages.txt +0 -0
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info}/top_level.txt +0 -0
- {autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1 @@
|
|
|
1
|
+
import sys, types, os;p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = __import__('importlib.util');__import__('importlib.machinery');m = sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.4.1b20251208
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -24,21 +23,37 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
24
23
|
Classifier: Operating System :: POSIX
|
|
25
24
|
Classifier: Operating System :: Unix
|
|
26
25
|
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
28
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
29
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
30
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
28
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
Requires-Dist: autogluon.
|
|
40
|
-
Requires-Dist: autogluon.
|
|
41
|
-
Requires-Dist: autogluon.
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
38
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251208
|
|
39
|
+
Requires-Dist: autogluon.features==1.4.1b20251208
|
|
40
|
+
Requires-Dist: autogluon.tabular[all]==1.4.1b20251208
|
|
41
|
+
Requires-Dist: autogluon.multimodal==1.4.1b20251208
|
|
42
|
+
Requires-Dist: autogluon.timeseries[all]==1.4.1b20251208
|
|
43
|
+
Provides-Extra: tabarena
|
|
44
|
+
Requires-Dist: autogluon.tabular[tabarena]==1.4.1b20251208; extra == "tabarena"
|
|
45
|
+
Dynamic: author
|
|
46
|
+
Dynamic: classifier
|
|
47
|
+
Dynamic: description
|
|
48
|
+
Dynamic: description-content-type
|
|
49
|
+
Dynamic: home-page
|
|
50
|
+
Dynamic: license
|
|
51
|
+
Dynamic: license-file
|
|
52
|
+
Dynamic: project-url
|
|
53
|
+
Dynamic: provides-extra
|
|
54
|
+
Dynamic: requires-dist
|
|
55
|
+
Dynamic: requires-python
|
|
56
|
+
Dynamic: summary
|
|
42
57
|
|
|
43
58
|
|
|
44
59
|
|
|
@@ -49,22 +64,24 @@ Requires-Dist: autogluon.timeseries[all]==1.1.2b20240920
|
|
|
49
64
|
|
|
50
65
|
[](https://github.com/autogluon/autogluon/releases)
|
|
51
66
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
52
|
-
[](https://pypi.org/project/autogluon/)
|
|
53
68
|
[](https://pepy.tech/project/autogluon)
|
|
54
69
|
[](./LICENSE)
|
|
55
|
-
[](https://discord.gg/wjUmjqAc2N)
|
|
56
71
|
[](https://twitter.com/autogluon)
|
|
57
72
|
[](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
|
|
58
73
|
[](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
|
|
59
74
|
|
|
60
75
|
[Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
|
|
61
76
|
|
|
62
|
-
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
|
63
77
|
</div>
|
|
64
78
|
|
|
79
|
+
AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
|
80
|
+
|
|
81
|
+
|
|
65
82
|
## 💾 Installation
|
|
66
83
|
|
|
67
|
-
AutoGluon is supported on Python 3.
|
|
84
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
68
85
|
|
|
69
86
|
You can install AutoGluon with:
|
|
70
87
|
|
|
@@ -80,15 +97,15 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
|
80
97
|
|
|
81
98
|
```python
|
|
82
99
|
from autogluon.tabular import TabularPredictor
|
|
83
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
|
100
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
|
84
101
|
predictions = predictor.predict("test.csv")
|
|
85
102
|
```
|
|
86
103
|
|
|
87
104
|
| AutoGluon Task | Quickstart | API |
|
|
88
105
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
89
106
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
90
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
91
107
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
108
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
92
109
|
|
|
93
110
|
## :mag: Resources
|
|
94
111
|
|
|
@@ -98,10 +115,11 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
98
115
|
|
|
99
116
|
| Title | Format | Location | Date |
|
|
100
117
|
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
|
|
101
|
-
| :tv: [AutoGluon
|
|
118
|
+
| :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
|
|
119
|
+
| :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
|
|
102
120
|
| :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
|
|
103
|
-
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
|
104
|
-
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
|
121
|
+
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
|
122
|
+
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
|
105
123
|
| :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
|
|
106
124
|
|
|
107
125
|
### Scientific Publications
|
|
@@ -110,7 +128,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
110
128
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
111
129
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
112
130
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
113
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
131
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
132
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
133
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
134
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
114
135
|
|
|
115
136
|
### Articles
|
|
116
137
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -136,5 +157,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
136
157
|
## :classical_building: License
|
|
137
158
|
|
|
138
159
|
This library is licensed under the Apache 2.0 License.
|
|
139
|
-
|
|
140
|
-
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
autogluon-1.4.1b20251208-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
|
|
2
|
+
autogluon/_internal_/__init__.py,sha256=BnEXNpukKnZ-kdTK24Rup8nG9XMmePgnSiBYautHnu8,38
|
|
3
|
+
autogluon-1.4.1b20251208.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
4
|
+
autogluon-1.4.1b20251208.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
5
|
+
autogluon-1.4.1b20251208.dist-info/METADATA,sha256=9PNpBo5MsGof2RrR2Cn9ho6QQSrZJFXLYFFzYaZq1bU,12394
|
|
6
|
+
autogluon-1.4.1b20251208.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
7
|
+
autogluon-1.4.1b20251208.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
8
|
+
autogluon-1.4.1b20251208.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
9
|
+
autogluon-1.4.1b20251208.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
10
|
+
autogluon-1.4.1b20251208.dist-info/RECORD,,
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
import sys, types, os;has_mfs = sys.version_info > (3, 5);p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = has_mfs and __import__('importlib.util');has_mfs and __import__('importlib.machinery');m = has_mfs and sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
|
|
@@ -1,10 +0,0 @@
|
|
|
1
|
-
autogluon-1.1.2b20240920-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
|
-
autogluon/_internal_/__init__.py,sha256=BnEXNpukKnZ-kdTK24Rup8nG9XMmePgnSiBYautHnu8,38
|
|
3
|
-
autogluon-1.1.2b20240920.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
4
|
-
autogluon-1.1.2b20240920.dist-info/METADATA,sha256=0fj9eKWyQcmU_AF0lt2OIdz3au8Efi7DmN9PZmMhhyc,11205
|
|
5
|
-
autogluon-1.1.2b20240920.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
6
|
-
autogluon-1.1.2b20240920.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
|
7
|
-
autogluon-1.1.2b20240920.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
8
|
-
autogluon-1.1.2b20240920.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
9
|
-
autogluon-1.1.2b20240920.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
10
|
-
autogluon-1.1.2b20240920.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
{autogluon-1.1.2b20240920.dist-info → autogluon-1.4.1b20251208.dist-info}/namespace_packages.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|