autogluon.timeseries 1.4.1b20251218__py3-none-any.whl → 1.5.0b20251223__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (20) hide show
  1. autogluon/timeseries/configs/hyperparameter_presets.py +8 -9
  2. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -11
  3. autogluon/timeseries/models/autogluon_tabular/per_step.py +1 -1
  4. autogluon/timeseries/models/chronos/chronos2.py +2 -2
  5. autogluon/timeseries/models/chronos/model.py +1 -1
  6. autogluon/timeseries/models/ensemble/per_item_greedy.py +1 -1
  7. autogluon/timeseries/models/ensemble/weighted/greedy.py +2 -0
  8. autogluon/timeseries/models/local/statsforecast.py +1 -1
  9. autogluon/timeseries/predictor.py +14 -7
  10. autogluon/timeseries/trainer/trainer.py +0 -1
  11. autogluon/timeseries/version.py +1 -1
  12. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/METADATA +7 -7
  13. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/RECORD +20 -20
  14. /autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth → /autogluon.timeseries-1.5.0b20251223-py3.11-nspkg.pth +0 -0
  15. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/WHEEL +0 -0
  16. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/licenses/LICENSE +0 -0
  17. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/licenses/NOTICE +0 -0
  18. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/namespace_packages.txt +0 -0
  19. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/top_level.txt +0 -0
  20. {autogluon_timeseries-1.4.1b20251218.dist-info → autogluon_timeseries-1.5.0b20251223.dist-info}/zip-safe +0 -0
@@ -12,21 +12,13 @@ def get_hyperparameter_presets() -> dict[str, dict[str, dict[str, Any] | list[di
12
12
  "DirectTabular": {"max_num_samples": 100_000},
13
13
  },
14
14
  "light": {
15
- "Naive": {},
16
15
  "SeasonalNaive": {},
17
16
  "ETS": {},
18
17
  "Theta": {},
19
18
  "RecursiveTabular": {},
20
19
  "DirectTabular": {},
21
20
  "TemporalFusionTransformer": {},
22
- "Chronos": {"model_path": "bolt_small"},
23
- },
24
- "light_inference": {
25
- "SeasonalNaive": {},
26
- "DirectTabular": {},
27
- "RecursiveTabular": {},
28
- "TemporalFusionTransformer": {},
29
- "PatchTST": {},
21
+ "Chronos2": {"model_path": "autogluon/chronos-2-small"},
30
22
  },
31
23
  "default": {
32
24
  "SeasonalNaive": {},
@@ -35,6 +27,7 @@ def get_hyperparameter_presets() -> dict[str, dict[str, dict[str, Any] | list[di
35
27
  "RecursiveTabular": {},
36
28
  "DirectTabular": {},
37
29
  "TemporalFusionTransformer": {},
30
+ "DeepAR": {},
38
31
  "Chronos2": [
39
32
  {},
40
33
  {
@@ -44,5 +37,11 @@ def get_hyperparameter_presets() -> dict[str, dict[str, dict[str, Any] | list[di
44
37
  "eval_during_fine_tune": True,
45
38
  },
46
39
  ],
40
+ "Chronos": {
41
+ "ag_args": {"name_suffix": "WithRegressor"},
42
+ "model_path": "bolt_small",
43
+ "target_scaler": "standard",
44
+ "covariate_regressor": {"model_name": "CAT", "model_hyperparameters": {"iterations": 1000}},
45
+ },
47
46
  },
48
47
  }
@@ -668,7 +668,6 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, metaclass=
668
668
  pass
669
669
 
670
670
  def _preprocess_time_limit(self, time_limit: float) -> float:
671
- original_time_limit = time_limit
672
671
  max_time_limit_ratio = self._extra_ag_args.get("max_time_limit_ratio", self.default_max_time_limit_ratio)
673
672
  max_time_limit = self._extra_ag_args.get("max_time_limit")
674
673
 
@@ -677,16 +676,6 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, metaclass=
677
676
  if max_time_limit is not None:
678
677
  time_limit = min(time_limit, max_time_limit)
679
678
 
680
- if original_time_limit != time_limit:
681
- time_limit_og_str = f"{original_time_limit:.2f}s" if original_time_limit is not None else "None"
682
- time_limit_str = f"{time_limit:.2f}s" if time_limit is not None else "None"
683
- logger.debug(
684
- f"\tTime limit adjusted due to model hyperparameters: "
685
- f"{time_limit_og_str} -> {time_limit_str} "
686
- f"(ag.max_time_limit={max_time_limit}, "
687
- f"ag.max_time_limit_ratio={max_time_limit_ratio}"
688
- )
689
-
690
679
  return time_limit
691
680
 
692
681
  def _get_search_space(self):
@@ -80,7 +80,7 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
80
80
  If None, automatically determined based on available memory to prevent OOM errors.
81
81
  """
82
82
 
83
- ag_priority = 70
83
+ ag_priority = 80
84
84
  _dummy_freq = "D"
85
85
 
86
86
  def __init__(self, *args, **kwargs):
@@ -83,7 +83,7 @@ class Chronos2Model(AbstractTimeSeriesModel):
83
83
  """
84
84
 
85
85
  ag_model_aliases = ["Chronos-2"]
86
- ag_priority = 90
86
+ ag_priority = 75
87
87
  fine_tuned_ckpt_name: str = "fine-tuned-ckpt"
88
88
 
89
89
  _supports_known_covariates = True
@@ -147,7 +147,7 @@ class Chronos2Model(AbstractTimeSeriesModel):
147
147
  self.load_model_pipeline()
148
148
 
149
149
  # NOTE: This must be placed after load_model_pipeline to ensure that the loggers are available in loggerDict
150
- self._update_transformers_loggers(logging.ERROR if verbosity <= 3 else logging.INFO)
150
+ self._update_transformers_loggers(logging.ERROR if verbosity <= 3 else logging.WARNING)
151
151
 
152
152
  if self.get_hyperparameter("fine_tune"):
153
153
  self._fine_tune(train_data, val_data, time_limit=time_limit, verbosity=verbosity)
@@ -471,7 +471,7 @@ class ChronosModel(AbstractTimeSeriesModel):
471
471
  for logger_name in logging.root.manager.loggerDict:
472
472
  if "transformers" in logger_name:
473
473
  transformers_logger = logging.getLogger(logger_name)
474
- transformers_logger.setLevel(logging.ERROR if verbosity <= 3 else logging.INFO)
474
+ transformers_logger.setLevel(logging.ERROR if verbosity <= 3 else logging.WARNING)
475
475
 
476
476
  self._check_fit_params()
477
477
  self._log_unused_hyperparameters()
@@ -102,7 +102,7 @@ class PerItemGreedyEnsemble(AbstractTimeSeriesEnsembleModel):
102
102
  self.average_weight = self.average_weight[models_to_keep]
103
103
 
104
104
  weights_for_printing = {model: round(float(weight), 2) for model, weight in self.average_weight.items()}
105
- logger.info(f"\tAverage ensemble weights: {pprint.pformat(weights_for_printing, width=200)}")
105
+ logger.info(f"\tAverage ensemble weights: {pprint.pformat(weights_for_printing, width=1000)}")
106
106
 
107
107
  def _split_predictions_per_item(
108
108
  self, predictions_per_window: dict[str, list[TimeSeriesDataFrame]]
@@ -14,6 +14,8 @@ class GreedyEnsemble(AbstractWeightedTimeSeriesEnsembleModel):
14
14
  """Greedy ensemble selection algorithm that iteratively builds an ensemble by selecting models with
15
15
  replacement.
16
16
 
17
+ Also known as ``WeightedEnsemble`` for backward compatibility.
18
+
17
19
  This class implements the Ensemble Selection algorithm by Caruana et al. [Car2004]_, which starts
18
20
  with an empty ensemble and repeatedly adds the model that most improves the ensemble's validation
19
21
  performance. Models can be selected multiple times, allowing the algorithm to assign higher effective
@@ -269,7 +269,7 @@ class AutoETSModel(AbstractProbabilisticStatsForecastModel):
269
269
  This significantly speeds up fitting and usually leads to no change in accuracy.
270
270
  """
271
271
 
272
- ag_priority = 70
272
+ ag_priority = 60
273
273
  init_time_in_seconds = 0 # C++ models require no compilation
274
274
  allowed_local_model_args = [
275
275
  "damped",
@@ -10,6 +10,7 @@ from typing import Any, Literal, Type, cast, overload
10
10
  import numpy as np
11
11
  import pandas as pd
12
12
 
13
+ from autogluon.common.utils.decorators import apply_presets
13
14
  from autogluon.common.utils.log_utils import (
14
15
  add_log_to_file,
15
16
  set_logger_verbosity,
@@ -17,7 +18,6 @@ from autogluon.common.utils.log_utils import (
17
18
  )
18
19
  from autogluon.common.utils.system_info import get_ag_system_info
19
20
  from autogluon.common.utils.utils import check_saved_predictor_version, setup_outputdir
20
- from autogluon.core.utils.decorators import apply_presets
21
21
  from autogluon.core.utils.loaders import load_pkl, load_str
22
22
  from autogluon.core.utils.savers import save_pkl, save_str
23
23
  from autogluon.timeseries import __version__ as current_ag_version
@@ -487,18 +487,23 @@ class TimeSeriesPredictor:
487
487
  Available presets:
488
488
 
489
489
  - ``"fast_training"``: Simple statistical and tree-based ML models. These models are fast to train but may not be very accurate.
490
- - ``"medium_quality"``: Same models as above, plus deep learning models ``TemporalFusionTransformer`` and Chronos-Bolt (small). Produces good forecasts with reasonable training time.
490
+ - ``"medium_quality"``: Same models as above, plus deep learning models ``TemporalFusionTransformer`` and Chronos-2 (small). Produces good forecasts with reasonable training time.
491
491
  - ``"high_quality"``: A mix of multiple DL, ML and statistical forecasting models available in AutoGluon that offers the best forecast accuracy. Much more accurate than ``medium_quality``, but takes longer to train.
492
492
  - ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
493
493
 
494
- Available presets with the `Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting>`_ model:
494
+ Available presets with the `Chronos-2 and Chronos-Bolt <https://github.com/amazon-science/chronos-forecasting>`_ models:
495
495
 
496
+ - ``"chronos2"``: `Chronos-2 <https://huggingface.co/amazon/chronos-2>`_ base model for zero-shot forecasting.
497
+ - ``"chronos2_small"``: Smaller Chronos-2 model for faster zero-shot forecasting with lower memory footprint.
498
+ - ``"chronos2_ensemble"``: Ensemble combining zero-shot Chronos-2 base model with fine-tuned Chronos-2 small model for improved accuracy.
496
499
  - ``"bolt_{model_size}"``: where model size is one of ``tiny,mini,small,base``. Uses the Chronos-Bolt pretrained model for zero-shot forecasting.
497
- See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
498
500
 
499
- Exact definitions of these presets can be found in the source code
500
- [`1 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/presets_configs.py>`_,
501
- `2 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/models/presets.py>`_].
501
+ See the documentation for ``Chronos2`` and ``Chronos`` models in :ref:`Forecasting Time Series - Model Zoo <forecasting_model_zoo>`
502
+ or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
503
+
504
+ Exact definitions of all presets can be found in the source code
505
+ [`1 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/predictor_presets.py>`_,
506
+ `2 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/hyperparameter_presets.py>`_].
502
507
 
503
508
  If no ``presets`` are selected, user-provided values for ``hyperparameters`` will be used (defaulting to their
504
509
  default values specified below).
@@ -574,6 +579,8 @@ class TimeSeriesPredictor:
574
579
  * "bayes": Perform HPO with HyperOpt on GluonTS-backed models via Ray tune. Perform random search on other models.
575
580
  * "auto": alias for "bayes"
576
581
 
582
+ To enable HyperOpt, install the corresponding extra with ``pip install "autogluon.timeseries[ray]"``.
583
+
577
584
  The "scheduler" and "searcher" key are required when providing a dict.
578
585
 
579
586
  Example::
@@ -495,7 +495,6 @@ class TimeSeriesTrainer(AbstractTrainer[TimeSeriesModelBase]):
495
495
  time_reserved_for_ensemble = min(
496
496
  self.max_ensemble_time_limit, time_left / (num_base_models - i + 1)
497
497
  )
498
- logger.debug(f"Reserving {time_reserved_for_ensemble:.1f}s for ensemble")
499
498
  else:
500
499
  time_reserved_for_ensemble = 0.0
501
500
  time_left_for_model = (time_left - time_reserved_for_ensemble) / (num_base_models - i)
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20251218"
3
+ __version__ = "1.5.0b20251223"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20251218
3
+ Version: 1.5.0b20251223
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -56,19 +56,19 @@ Requires-Dist: einops<1,>=0.7
56
56
  Requires-Dist: chronos-forecasting<2.4,>=2.2.2
57
57
  Requires-Dist: peft<0.18,>=0.13.0
58
58
  Requires-Dist: tensorboard<3,>=2.9
59
- Requires-Dist: autogluon.core==1.4.1b20251218
60
- Requires-Dist: autogluon.common==1.4.1b20251218
61
- Requires-Dist: autogluon.features==1.4.1b20251218
62
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251218
59
+ Requires-Dist: autogluon.core==1.5.0b20251223
60
+ Requires-Dist: autogluon.common==1.5.0b20251223
61
+ Requires-Dist: autogluon.features==1.5.0b20251223
62
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.5.0b20251223
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
65
65
  Requires-Dist: ruff>=0.0.285; extra == "tests"
66
66
  Requires-Dist: flaky<4,>=3.7; extra == "tests"
67
67
  Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[raytune]==1.4.1b20251218; extra == "ray"
69
+ Requires-Dist: autogluon.core[raytune]==1.5.0b20251223; extra == "ray"
70
70
  Provides-Extra: all
71
- Requires-Dist: autogluon.core[raytune]==1.4.1b20251218; extra == "all"
71
+ Requires-Dist: autogluon.core[raytune]==1.5.0b20251223; extra == "all"
72
72
  Dynamic: author
73
73
  Dynamic: classifier
74
74
  Dynamic: description
@@ -1,12 +1,12 @@
1
- autogluon.timeseries-1.4.1b20251218-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
1
+ autogluon.timeseries-1.5.0b20251223-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/learner.py,sha256=9kGn0ACGfbyZRlZmwkrgBbkwq7c2715yKDCh1EK3EWQ,14961
4
- autogluon/timeseries/predictor.py,sha256=vAm2z69GKqQD6EVIfAl3yXUAkgjmU5wY7Q-s99QUPYQ,106046
4
+ autogluon/timeseries/predictor.py,sha256=egBu6YKVe8GRrLJ1khOKflzSu-VDSH5_mCCQuaXQNRY,106686
5
5
  autogluon/timeseries/regressor.py,sha256=HDdqi7MYRheW3uZy5c50sqVDAHap0ooyQBdOvKEKkWM,11718
6
6
  autogluon/timeseries/splitter.py,sha256=2rypDxDKkqOC2v5nPJ6m0cmHQTZ9D6qUFrQV1HC9lz4,2329
7
- autogluon/timeseries/version.py,sha256=T4Q4YP7KG82ICbSOmlyEJbpVgeghgzEACIcsaDiwn28,91
7
+ autogluon/timeseries/version.py,sha256=8JLrm5aNz-MCYrYXeYCWT8qjMtgup-QxkV_u6DNr9vQ,91
8
8
  autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
9
- autogluon/timeseries/configs/hyperparameter_presets.py,sha256=QoaCVXiOeZVJi92eNBjrJmhQyoVmTLS5X63NGPAOK6w,1485
9
+ autogluon/timeseries/configs/hyperparameter_presets.py,sha256=F38QMemh3LR4cT60xMZctI6O1XTOgNpVSleGOKMfhQQ,1586
10
10
  autogluon/timeseries/configs/predictor_presets.py,sha256=2CkUXIFtup5w5sQkIhoU5G84b9jiNfcUC0yEug3izGY,2327
11
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
12
  autogluon/timeseries/dataset/ts_dataframe.py,sha256=IOIkwV_VPV3JvilNt98gZ77gMHIpk-Ug-trDvqSk_Jg,52228
@@ -18,22 +18,22 @@ autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5
18
18
  autogluon/timeseries/models/__init__.py,sha256=zPdwxiveOTGU9658tDPMFXbflZ5fzd_AJdbCacbfZ0s,1375
19
19
  autogluon/timeseries/models/registry.py,sha256=dkuyKG5UK2xiGtXcsuyRDXrI-YC84zkPre8Z3wt9T_A,2115
20
20
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
21
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=7j_ULO_d7SUUprHqnMjF_4pz8rDXODyyFeboJaQohAw,32489
21
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=80ShlklwAnGoMEKjMDjgoVrkGG6x2Eg3nOwbjJVMCqk,31909
22
22
  autogluon/timeseries/models/abstract/model_trial.py,sha256=xKD6Nw8hIqAq4HxNVcGUhr9BuEqzFn7FX0TenvZHU0Q,3753
23
23
  autogluon/timeseries/models/abstract/tunable.py,sha256=thl_wJjB9ao1T5NNF1RVH5k3yFqmao0irX-eUNqDs8k,7111
24
24
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
25
25
  autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=FJlYqMZJaltTlh54LMrDOgICgGanIymBI2F4OevVQ6A,36690
26
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=kc0OIveCUfMbl1yGANW42EaRFZZNmlr1AJdcG-nqihA,23360
26
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=q2V8dSyHns7gkcDwAIpczFse3vHHyYSm4LjJ4KICsWo,23360
27
27
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=AkXEInK4GocApU5GylECH01qgz5cLLLqC9apuN0eUbQ,2873
28
28
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
29
  autogluon/timeseries/models/chronos/__init__.py,sha256=dIoAImmZc0dTlut4CZkJxcg1bpuHKZkS8x8Y6fBoUAY,113
30
- autogluon/timeseries/models/chronos/chronos2.py,sha256=tTB2TI7VT7dS2gO7g4MgT_6i2hJavyZvpYeK_2HdK20,16797
31
- autogluon/timeseries/models/chronos/model.py,sha256=q3OiE9ZFrdh14q_FfxjDhUVWpuDTv3k2t5h-FipWAPU,33678
30
+ autogluon/timeseries/models/chronos/chronos2.py,sha256=N8TW1EaYwqPqeRbntlkhz9L7uADBna0LDZPMYWH4w3c,16800
31
+ autogluon/timeseries/models/chronos/model.py,sha256=npTcHR6nSi7lfCzZfVl_9G6iHJwIMRm3wfqjOAnBcIQ,33681
32
32
  autogluon/timeseries/models/chronos/utils.py,sha256=33_kycc7AVasS3c7-AuVFtqBTZzV_yszr-MpKe28S3M,14449
33
33
  autogluon/timeseries/models/ensemble/__init__.py,sha256=3_Vn6RHpjouthrEoXs1guKUpUX6JoUgMVCgxPt2pyLw,1302
34
34
  autogluon/timeseries/models/ensemble/abstract.py,sha256=gAaspq4f67MTfs7KW6ADVU0KfPeBKySPstCqUeC7JYs,4579
35
35
  autogluon/timeseries/models/ensemble/ensemble_selection.py,sha256=hepycVJTtbibzTKq5Sk04L_vUuYlLFItkSybaCc_Jv8,6366
36
- autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=UlPtSBwzbzVtcf_o8HGMJDbpnWb95KcuvcS_z-AiT5k,7868
36
+ autogluon/timeseries/models/ensemble/per_item_greedy.py,sha256=XaUEUO6fQD7Ck7X0882pvax5e3g55o_g8uMBnSP-c5M,7869
37
37
  autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=u4vGTH9gP6oATYKkxnvoiDZvc5rqfnfgrODHxIvHP7U,207
38
38
  autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=Oci1XEgFFTle0JF5Z8PhnMjG1iPrhhtunoKUPUPhTLw,10190
39
39
  autogluon/timeseries/models/ensemble/array_based/models.py,sha256=UOV3t3QH_j0AGg2y3gJIWZ5rS5tHI39z3yUJlhkEyA0,8603
@@ -45,7 +45,7 @@ autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=prH
45
45
  autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
46
46
  autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=meGVoSfPOjmEwTKGRTUQJ1N9bZtpewJ217TGqKNye04,1839
47
47
  autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=KsFcdmhkjywqSYvx9rdWoFzjLO-czKsOj3CWuC61SS4,3715
48
- autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=NN51NnrbHd7zdJs2kErm6bs-B_OcbjlkD2j2Q00IUOE,2589
48
+ autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=ziyudzlLDPLW_vGuh2U9uZ2YH0h478mRpM3H9q7nf4M,2657
49
49
  autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
50
50
  autogluon/timeseries/models/gluonts/abstract.py,sha256=qJ60DSkzSI4E1kx5RGeGBehkiMvcAVGSUXYSpZXo8nk,27699
51
51
  autogluon/timeseries/models/gluonts/dataset.py,sha256=ApR-r4o0OV4jQ2hYUppJ4yjvWX02JoHod5O4acEKiHw,5074
@@ -54,7 +54,7 @@ autogluon/timeseries/models/local/__init__.py,sha256=TiKY7M6Foy8vtshfZiStEH58_XG
54
54
  autogluon/timeseries/models/local/abstract_local_model.py,sha256=7pbyE4vhXgoCEcHAhxpxBVCOEG-LSrBptGwjLXd-s8o,11335
55
55
  autogluon/timeseries/models/local/naive.py,sha256=w0XuMcgcTvTUEi2iXcd6BGvyHKB-kpqbv9c9iK4pMOA,7490
56
56
  autogluon/timeseries/models/local/npts.py,sha256=mKuDsGnaYV8QkIgGR8se-1pXb2JAxzafESt2g_21ENA,4530
57
- autogluon/timeseries/models/local/statsforecast.py,sha256=gt9evIxlymisBlBZU7aRFtZQ3mgyX7a0xtmvFyKRXK4,33275
57
+ autogluon/timeseries/models/local/statsforecast.py,sha256=h_WpYGAEA761ehhZv6RZXsGC-WVr4BkPh1C8xUbcKuQ,33275
58
58
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
59
59
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=bv8_ux-7JXPwhbFXeBN893xQo6echCCMwqH4aEMK250,12937
60
60
  autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
@@ -77,7 +77,7 @@ autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFx
77
77
  autogluon/timeseries/trainer/ensemble_composer.py,sha256=zGa8vocPQGsHf-7ti8DsHwjEA176FkCt7up2LwWCK4Y,19465
78
78
  autogluon/timeseries/trainer/model_set_builder.py,sha256=kROApbu10_ro-GVYlnx3oTKZj2TcNswWbOFB1QyBCOc,10737
79
79
  autogluon/timeseries/trainer/prediction_cache.py,sha256=KKs22UUGrVfQN_81IgzL7Bfc8tjWk3k6YW3uHURaSs0,5496
80
- autogluon/timeseries/trainer/trainer.py,sha256=CxIL6yxEGckzwCkVv81equ5WJmI-5fTgMxc8CJYy4OU,56151
80
+ autogluon/timeseries/trainer/trainer.py,sha256=vraCZtARPV3gNHlhktmDlbTr8Mn59H-JOIaXAdpTDw8,56057
81
81
  autogluon/timeseries/trainer/utils.py,sha256=7N4vRP6GFUlRAahxQ9PqppdIMFqMz3wpZ5u-_onR24M,588
82
82
  autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
83
83
  autogluon/timeseries/transforms/covariate_scaler.py,sha256=CpTtokiE1uEg_RJa4kEUUuBwXZpPL11OC2fgCkRpGlQ,6986
@@ -93,11 +93,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
93
93
  autogluon/timeseries/utils/datetime/lags.py,sha256=dijskkPDJXhXbRHGQZPhUFuEom3typKbOeET7cxkHGY,5965
94
94
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=-w3bULdkIZKP-JrO1ahHLyNCanLhejocHlasZShuwA0,802
95
95
  autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
96
- autogluon_timeseries-1.4.1b20251218.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
97
- autogluon_timeseries-1.4.1b20251218.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
98
- autogluon_timeseries-1.4.1b20251218.dist-info/METADATA,sha256=x2O7j5iIKfBKMLDDci6RdvKoZ1p0NZ-SXWxjhNpWeJY,13425
99
- autogluon_timeseries-1.4.1b20251218.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
- autogluon_timeseries-1.4.1b20251218.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
101
- autogluon_timeseries-1.4.1b20251218.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
102
- autogluon_timeseries-1.4.1b20251218.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
103
- autogluon_timeseries-1.4.1b20251218.dist-info/RECORD,,
96
+ autogluon_timeseries-1.5.0b20251223.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
97
+ autogluon_timeseries-1.5.0b20251223.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
98
+ autogluon_timeseries-1.5.0b20251223.dist-info/METADATA,sha256=RN3ZXM3arl4aTC8jFDaGt7BS-VTtZ1hRyGySOp8r43s,13425
99
+ autogluon_timeseries-1.5.0b20251223.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
100
+ autogluon_timeseries-1.5.0b20251223.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
101
+ autogluon_timeseries-1.5.0b20251223.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
102
+ autogluon_timeseries-1.5.0b20251223.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
103
+ autogluon_timeseries-1.5.0b20251223.dist-info/RECORD,,