autogluon.timeseries 1.4.1b20250917__py3-none-any.whl → 1.4.1b20251003__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (26) hide show
  1. autogluon/timeseries/models/__init__.py +2 -0
  2. autogluon/timeseries/models/toto/__init__.py +3 -0
  3. autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
  4. autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
  5. autogluon/timeseries/models/toto/_internal/backbone/attention.py +197 -0
  6. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
  7. autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
  8. autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
  9. autogluon/timeseries/models/toto/_internal/backbone/rope.py +94 -0
  10. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +306 -0
  11. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
  12. autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
  13. autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
  14. autogluon/timeseries/models/toto/dataloader.py +108 -0
  15. autogluon/timeseries/models/toto/hf_pretrained_model.py +119 -0
  16. autogluon/timeseries/models/toto/model.py +234 -0
  17. autogluon/timeseries/version.py +1 -1
  18. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/METADATA +10 -5
  19. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/RECORD +26 -11
  20. /autogluon.timeseries-1.4.1b20250917-py3.9-nspkg.pth → /autogluon.timeseries-1.4.1b20251003-py3.9-nspkg.pth +0 -0
  21. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/LICENSE +0 -0
  22. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/NOTICE +0 -0
  23. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/WHEEL +0 -0
  24. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/namespace_packages.txt +0 -0
  25. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/top_level.txt +0 -0
  26. {autogluon.timeseries-1.4.1b20250917.dist-info → autogluon.timeseries-1.4.1b20251003.dist-info}/zip-safe +0 -0
@@ -0,0 +1,234 @@
1
+ import logging
2
+ import os
3
+ from typing import TYPE_CHECKING, Any, Optional, Sequence, Union
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ from typing_extensions import Self
8
+
9
+ from autogluon.common.loaders import load_pkl
10
+ from autogluon.timeseries import TimeSeriesDataFrame
11
+ from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
12
+ from autogluon.timeseries.utils.features import CovariateMetadata
13
+
14
+ if TYPE_CHECKING:
15
+ from ._internal import TotoForecaster
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ class TotoModel(AbstractTimeSeriesModel):
21
+ """Toto (Time-Series-Optimized Transformer for Observability) [CohenKhwajaetal2025]_ pretrained time series forecasting model.
22
+
23
+ Toto is a 151M parameter model trained on over 1T data points from DataDog's internal observability systems, as well as
24
+ the GIFT-eval pretrain, Chronos pretraining, and synthetically generated time series corpora. It is a decoder-only
25
+ architecture that autoregressively outputs parametric distribution forecasts. More details can be found on
26
+ `Hugging Face <https://huggingface.co/Datadog/Toto-Open-Base-1.0>`_ and `GitHub <https://github.com/DataDog/toto>`_.
27
+
28
+ The AutoGluon implementation of Toto is on a port of the original implementation. It is optimized for easy maintenance
29
+ with the rest of the AutoGluon model zoo, and does not feature some important optimizations such as xformers and flash-attention
30
+ available in the original model repository. The AutoGluon implementation of Toto requires a CUDA-compatible GPU.
31
+
32
+ References
33
+ ----------
34
+ .. [CohenKhwajaetal2025] Cohen, Ben, Khwaja, Emaad et al.
35
+ "This Time is Different: An Observability Perspective on Time Series Foundation Models."
36
+ https://arxiv.org/abs/2505.14766
37
+
38
+
39
+ Other Parameters
40
+ ----------------
41
+ model_path : str, default = "Datadog/Toto-Open-Base-1.0"
42
+ Model path used for the model, i.e., a HuggingFace transformers ``name_or_path``. Can be a
43
+ compatible model name on HuggingFace Hub or a local path to a model directory.
44
+ batch_size : int, default = 24
45
+ Size of batches used during inference.
46
+ num_samples : int, default = 256
47
+ Number of samples used during inference.
48
+ device : str, default = "cuda"
49
+ Device to use for inference. Toto requires a CUDA-compatible GPU to run.
50
+ context_length : int or None, default = 4096
51
+ The context length to use in the model. Shorter context lengths will decrease model accuracy, but result
52
+ in faster inference.
53
+ compile_model : bool, default = True
54
+ Whether to compile the model using torch.compile() for faster inference. May increase initial loading time
55
+ but can provide speedups during inference.
56
+ """
57
+
58
+ default_model_path: str = "Datadog/Toto-Open-Base-1.0"
59
+
60
+ def __init__(
61
+ self,
62
+ path: Optional[str] = None,
63
+ name: Optional[str] = None,
64
+ hyperparameters: Optional[dict[str, Any]] = None,
65
+ freq: Optional[str] = None,
66
+ prediction_length: int = 1,
67
+ covariate_metadata: Optional[CovariateMetadata] = None,
68
+ target: str = "target",
69
+ quantile_levels: Sequence[float] = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
70
+ eval_metric: Any = None,
71
+ ):
72
+ hyperparameters = hyperparameters if hyperparameters is not None else {}
73
+
74
+ self.model_path = hyperparameters.get("model_path", self.default_model_path)
75
+
76
+ super().__init__(
77
+ path=path,
78
+ name=name,
79
+ hyperparameters=hyperparameters,
80
+ freq=freq,
81
+ prediction_length=prediction_length,
82
+ covariate_metadata=covariate_metadata,
83
+ target=target,
84
+ quantile_levels=quantile_levels,
85
+ eval_metric=eval_metric,
86
+ )
87
+
88
+ self._forecaster: Optional[TotoForecaster] = None
89
+
90
+ def save(self, path: Optional[str] = None, verbose: bool = True) -> str:
91
+ forecaster = self._forecaster
92
+ self._forecaster = None
93
+ path = super().save(path=path, verbose=verbose)
94
+ self._forecaster = forecaster
95
+
96
+ return str(path)
97
+
98
+ @classmethod
99
+ def load(cls, path: str, reset_paths: bool = True, load_oof: bool = False, verbose: bool = True) -> Self:
100
+ model = load_pkl.load(path=os.path.join(path, cls.model_file_name), verbose=verbose)
101
+ if reset_paths:
102
+ model.set_contexts(path)
103
+
104
+ return model
105
+
106
+ def _is_gpu_available(self) -> bool:
107
+ import torch.cuda
108
+
109
+ return torch.cuda.is_available()
110
+
111
+ def get_minimum_resources(self, is_gpu_available: bool = False) -> dict[str, Union[int, float]]:
112
+ return {"num_cpus": 1, "num_gpus": 1}
113
+
114
+ def load_forecaster(self):
115
+ from ._internal import TotoForecaster
116
+ from .hf_pretrained_model import TotoConfig, TotoPretrainedModel
117
+
118
+ if not self._is_gpu_available():
119
+ raise RuntimeError(
120
+ f"{self.name} requires a GPU to run, but no GPU was detected. "
121
+ "Please make sure that you are using a computer with a CUDA-compatible GPU and "
122
+ "`import torch; torch.cuda.is_available()` returns `True`."
123
+ )
124
+
125
+ hyperparameters = self.get_hyperparameters()
126
+ pretrained_model = TotoPretrainedModel.from_pretrained(
127
+ self.model_path,
128
+ config=TotoConfig.from_pretrained(self.model_path),
129
+ device_map=hyperparameters["device"],
130
+ )
131
+
132
+ if hyperparameters["compile_model"]:
133
+ pretrained_model.model.compile()
134
+
135
+ self._forecaster = TotoForecaster(model=pretrained_model.model)
136
+
137
+ def persist(self) -> Self:
138
+ if self._forecaster is None:
139
+ self.load_forecaster()
140
+ return self
141
+
142
+ def _get_default_hyperparameters(self) -> dict:
143
+ return {
144
+ "batch_size": 24,
145
+ "num_samples": 256,
146
+ "device": "cuda",
147
+ "context_length": 4096,
148
+ "compile_model": True,
149
+ }
150
+
151
+ @property
152
+ def allowed_hyperparameters(self) -> list[str]:
153
+ return super().allowed_hyperparameters + [
154
+ "model_path",
155
+ "batch_size",
156
+ "num_samples",
157
+ "device",
158
+ "context_length",
159
+ "compile_model",
160
+ ]
161
+
162
+ def _more_tags(self) -> dict:
163
+ return {
164
+ "allow_nan": True,
165
+ "can_use_train_data": False,
166
+ "can_use_val_data": False,
167
+ }
168
+
169
+ def _fit(
170
+ self,
171
+ train_data: TimeSeriesDataFrame,
172
+ val_data: Optional[TimeSeriesDataFrame] = None,
173
+ time_limit: Optional[float] = None,
174
+ num_cpus: Optional[int] = None,
175
+ num_gpus: Optional[int] = None,
176
+ verbosity: int = 2,
177
+ **kwargs,
178
+ ) -> None:
179
+ self._check_fit_params()
180
+ self.load_forecaster()
181
+
182
+ def _predict(
183
+ self, data: TimeSeriesDataFrame, known_covariates: Optional[TimeSeriesDataFrame] = None, **kwargs
184
+ ) -> TimeSeriesDataFrame:
185
+ import torch
186
+
187
+ from .dataloader import TotoDataLoader, TotoInferenceDataset
188
+
189
+ hyperparameters = self.get_hyperparameters()
190
+
191
+ if self._forecaster is None:
192
+ self.load_forecaster()
193
+ assert self._forecaster, "Toto model failed to load"
194
+ device = self._forecaster.model.device
195
+
196
+ dataset = TotoInferenceDataset(
197
+ target_df=data.fill_missing_values("auto"),
198
+ max_context_length=hyperparameters["context_length"],
199
+ )
200
+ loader = TotoDataLoader(
201
+ dataset,
202
+ freq=self.freq,
203
+ batch_size=hyperparameters["batch_size"],
204
+ time_limit=kwargs.get("time_limit"),
205
+ device=device,
206
+ )
207
+
208
+ batch_means, batch_quantiles = [], []
209
+ with torch.inference_mode():
210
+ for masked_timeseries in loader:
211
+ forecast = self._forecaster.forecast(
212
+ masked_timeseries,
213
+ prediction_length=self.prediction_length,
214
+ num_samples=hyperparameters["num_samples"],
215
+ samples_per_batch=32,
216
+ )
217
+
218
+ batch_means.append(forecast.mean.cpu().numpy())
219
+ qs = np.array([forecast.quantile(q).cpu().numpy() for q in self.quantile_levels])
220
+ batch_quantiles.append(qs.squeeze(2).transpose(1, 2, 0))
221
+
222
+ df = pd.DataFrame(
223
+ np.concatenate(
224
+ [
225
+ np.concatenate(batch_means, axis=0).reshape(-1, 1),
226
+ np.concatenate(batch_quantiles, axis=0).reshape(-1, len(self.quantile_levels)),
227
+ ],
228
+ axis=1,
229
+ ),
230
+ columns=["mean"] + [str(q) for q in self.quantile_levels],
231
+ index=self.get_forecast_horizon_index(data),
232
+ )
233
+
234
+ return TimeSeriesDataFrame(df)
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250917"
3
+ __version__ = "1.4.1b20251003"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20250917
3
+ Version: 1.4.1b20251003
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,16 +55,21 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.4.1b20250917
59
- Requires-Dist: autogluon.common==1.4.1b20250917
60
- Requires-Dist: autogluon.features==1.4.1b20250917
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250917
58
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251003
59
+ Requires-Dist: autogluon.common==1.4.1b20251003
60
+ Requires-Dist: autogluon.features==1.4.1b20251003
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251003
62
62
  Provides-Extra: all
63
+ Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "all"
64
+ Requires-Dist: einops<1,>=0.7; extra == "all"
63
65
  Provides-Extra: tests
64
66
  Requires-Dist: pytest; extra == "tests"
65
67
  Requires-Dist: ruff>=0.0.285; extra == "tests"
66
68
  Requires-Dist: flaky<4,>=3.7; extra == "tests"
67
69
  Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
70
+ Provides-Extra: toto
71
+ Requires-Dist: einops<1,>=0.7; extra == "toto"
72
+ Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "toto"
68
73
 
69
74
 
70
75
 
@@ -1,11 +1,11 @@
1
- autogluon.timeseries-1.4.1b20250917-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.4.1b20251003-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=eQrqFVOmL-2JC85LgCMkbyoLpKS02Dilg1T8RUeS_LI,13887
5
5
  autogluon/timeseries/predictor.py,sha256=7X4YsWYa3Xk2RI1Irf2O-c3-I82Zqhg-cgj8cj_4AoA,88427
6
6
  autogluon/timeseries/regressor.py,sha256=lc8Qr3-8v4oxajtCnV3sxpUaW6vxXXJOA6Kr-qVne4k,11926
7
7
  autogluon/timeseries/splitter.py,sha256=8ACkuCXeUhQGUx4jz_Vv17q814WrHJQeKvq2v4-oE6s,3158
8
- autogluon/timeseries/version.py,sha256=4ybwz-_gJJkK6joDld6cMM3LMRqq9eYTxT7WGP327uM,91
8
+ autogluon/timeseries/version.py,sha256=m7vaKYpgPZNMLb9FSMXLkDiT72Ij1eEgM8hr-FGDUbc,91
9
9
  autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
10
10
  autogluon/timeseries/configs/hyperparameter_presets.py,sha256=GbI2sd3uakWtaeaMyF7B5z_lmyfb6ToK6PZEUZTyG9w,2031
11
11
  autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
@@ -16,7 +16,7 @@ autogluon/timeseries/metrics/abstract.py,sha256=6jbluvHXfLc_cuK1Fx0ZYle2sR4WGG6Y
16
16
  autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
17
17
  autogluon/timeseries/metrics/quantile.py,sha256=x0cq44fXRoMiuI4BVQ7mpWk1YgrK4OwLTlJAhCHQ7Xg,4634
18
18
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
- autogluon/timeseries/models/__init__.py,sha256=9YnqkOILtVEkbICk7J3VlMkMNySs-f5ErIUKrE5-fys,1294
19
+ autogluon/timeseries/models/__init__.py,sha256=9NY9mqYaZe_7XB70M6psHARH-Lpkfroj4toUUPO9BmI,1339
20
20
  autogluon/timeseries/models/registry.py,sha256=8n7W04ql0ckNQUzKcAW7bxreLI8wTAUTymACgLklH9M,2158
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
22
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=97HOi7fRPxtx8Y9hq-xdJI-kLMp6Z-8LUSvcfBjXFsM,31978
@@ -49,6 +49,21 @@ autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736n
49
49
  autogluon/timeseries/models/local/statsforecast.py,sha256=sZ6aEFzAyPNZX3rMULGWFht0Toapjb3EwHe5Rb76ZxA,33318
50
50
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
51
51
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=Hn-H2jLdeuB0_TxhAdununS8ti-iO-WSl3FOoxzcEJA,12369
52
+ autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
53
+ autogluon/timeseries/models/toto/dataloader.py,sha256=A5WHhnAe0J7fPo2KKG43hYLSrtUBGNweuqxMmClu3_A,3598
54
+ autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=Q8bVUaSlQVE4xFn_v7H0h_NFTxzHiM1V17KFytc50jk,4783
55
+ autogluon/timeseries/models/toto/model.py,sha256=eP0SAoUjv9l_ExK4eoPl9ZZHW_MXa-OVLYxhj3f1bl4,8809
56
+ autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
57
+ autogluon/timeseries/models/toto/_internal/dataset.py,sha256=xuAEOhoQNJGMoCxkLVLrgpdoOJuukAYbrSrnrkwFob0,6103
58
+ autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=UXiohiySn_Gs8kLheeVcVCO8qoEtYlEfMH1tukAOHsk,18520
59
+ autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
60
+ autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=HLUFoyqR8EqxUMT1BK-AjI4ClS8au35LcUo7Jx7Xhm0,9394
61
+ autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=HUjpY2ZWed74UYKjp31erXF2ZHf3mmQMw_5_cCFeJGg,10104
62
+ autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
63
+ autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
64
+ autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=Ghngo08DjHbwbyp6b-GXCyLeYR10dH-Y_RMOTYwIxPY,3527
65
+ autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=opqyhHIZ6mPdPlrr3gA0qt9FFogIAYNDSq-P7CyQiqE,13728
66
+ autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=5c-ngj4XHKlaedz1NkgdfQgqD2kUGkMn4mtGH_lTXsE,12410
52
67
  autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
53
68
  autogluon/timeseries/trainer/model_set_builder.py,sha256=s6tozfND3lLfst6Vxa_oP_wgCmDapyCJYFmCjkEn-es,10788
54
69
  autogluon/timeseries/trainer/prediction_cache.py,sha256=Vi6EbMiMheq_smA93U_MoMxYUV85RdPm0dvJFdsM8K4,5551
@@ -65,11 +80,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
65
80
  autogluon/timeseries/utils/datetime/lags.py,sha256=rjJtdBU0M41R1jwfmvCbo045s-6XBjhGVnGBQJ9-U1E,5997
66
81
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
67
82
  autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
68
- autogluon.timeseries-1.4.1b20250917.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
69
- autogluon.timeseries-1.4.1b20250917.dist-info/METADATA,sha256=_55BDBngt0x8tNYPNYFDOT_hn5iSUXCsn0BrJN4F9_s,12463
70
- autogluon.timeseries-1.4.1b20250917.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
71
- autogluon.timeseries-1.4.1b20250917.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
72
- autogluon.timeseries-1.4.1b20250917.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
73
- autogluon.timeseries-1.4.1b20250917.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
74
- autogluon.timeseries-1.4.1b20250917.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
75
- autogluon.timeseries-1.4.1b20250917.dist-info/RECORD,,
83
+ autogluon.timeseries-1.4.1b20251003.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
84
+ autogluon.timeseries-1.4.1b20251003.dist-info/METADATA,sha256=xAIDouWR1x06xs7OinjyC1cQwqxSt2IZDeEWyC-slKw,12702
85
+ autogluon.timeseries-1.4.1b20251003.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
86
+ autogluon.timeseries-1.4.1b20251003.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
87
+ autogluon.timeseries-1.4.1b20251003.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
88
+ autogluon.timeseries-1.4.1b20251003.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
89
+ autogluon.timeseries-1.4.1b20251003.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
90
+ autogluon.timeseries-1.4.1b20251003.dist-info/RECORD,,