autogluon.timeseries 1.4.1b20250830__py3-none-any.whl → 1.4.1b20251116__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/dataset/ts_dataframe.py +66 -53
- autogluon/timeseries/learner.py +5 -4
- autogluon/timeseries/metrics/quantile.py +1 -1
- autogluon/timeseries/metrics/utils.py +4 -4
- autogluon/timeseries/models/__init__.py +2 -0
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +28 -36
- autogluon/timeseries/models/autogluon_tabular/per_step.py +14 -5
- autogluon/timeseries/models/autogluon_tabular/transforms.py +9 -7
- autogluon/timeseries/models/chronos/model.py +104 -68
- autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +64 -32
- autogluon/timeseries/models/ensemble/__init__.py +29 -2
- autogluon/timeseries/models/ensemble/abstract.py +1 -37
- autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
- autogluon/timeseries/models/ensemble/array_based/abstract.py +247 -0
- autogluon/timeseries/models/ensemble/array_based/models.py +50 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +10 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +87 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +133 -0
- autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +141 -0
- autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
- autogluon/timeseries/models/ensemble/weighted/abstract.py +41 -0
- autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +0 -10
- autogluon/timeseries/models/gluonts/abstract.py +2 -2
- autogluon/timeseries/models/gluonts/dataset.py +2 -2
- autogluon/timeseries/models/local/abstract_local_model.py +2 -2
- autogluon/timeseries/models/multi_window/multi_window_model.py +1 -1
- autogluon/timeseries/models/toto/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
- autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
- autogluon/timeseries/models/toto/_internal/backbone/attention.py +197 -0
- autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
- autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
- autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
- autogluon/timeseries/models/toto/_internal/backbone/rope.py +94 -0
- autogluon/timeseries/models/toto/_internal/backbone/scaler.py +306 -0
- autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
- autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
- autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
- autogluon/timeseries/models/toto/dataloader.py +108 -0
- autogluon/timeseries/models/toto/hf_pretrained_model.py +119 -0
- autogluon/timeseries/models/toto/model.py +236 -0
- autogluon/timeseries/predictor.py +10 -26
- autogluon/timeseries/regressor.py +9 -7
- autogluon/timeseries/splitter.py +1 -25
- autogluon/timeseries/trainer/ensemble_composer.py +250 -0
- autogluon/timeseries/trainer/trainer.py +124 -193
- autogluon/timeseries/trainer/utils.py +18 -0
- autogluon/timeseries/transforms/covariate_scaler.py +1 -1
- autogluon/timeseries/transforms/target_scaler.py +7 -7
- autogluon/timeseries/utils/features.py +9 -5
- autogluon/timeseries/utils/forecast.py +5 -5
- autogluon/timeseries/version.py +1 -1
- autogluon.timeseries-1.4.1b20251116-py3.9-nspkg.pth +1 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/METADATA +28 -13
- autogluon_timeseries-1.4.1b20251116.dist-info/RECORD +96 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/WHEEL +1 -1
- autogluon/timeseries/evaluator.py +0 -6
- autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
- autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
- autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -530
- autogluon.timeseries-1.4.1b20250830-py3.9-nspkg.pth +0 -1
- autogluon.timeseries-1.4.1b20250830.dist-info/RECORD +0 -75
- /autogluon/timeseries/models/ensemble/{greedy.py → weighted/greedy.py} +0 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/LICENSE +0 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/NOTICE +0 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1b20251116
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -34,15 +33,15 @@ Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
34
|
Requires-Python: >=3.9, <3.13
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
37
|
-
License-File:
|
|
38
|
-
License-File:
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
39
38
|
Requires-Dist: joblib<1.7,>=1.2
|
|
40
39
|
Requires-Dist: numpy<2.4.0,>=1.25.0
|
|
41
40
|
Requires-Dist: scipy<1.17,>=1.5.4
|
|
42
41
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
43
42
|
Requires-Dist: torch<2.8,>=2.6
|
|
44
43
|
Requires-Dist: lightning<2.8,>=2.5.1
|
|
45
|
-
Requires-Dist:
|
|
44
|
+
Requires-Dist: pytorch_lightning
|
|
46
45
|
Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
|
|
47
46
|
Requires-Dist: accelerate<2.0,>=0.34.0
|
|
48
47
|
Requires-Dist: gluonts<0.17,>=0.15.0
|
|
@@ -54,17 +53,35 @@ Requires-Dist: coreforecast<0.0.17,>=0.0.12
|
|
|
54
53
|
Requires-Dist: fugue>=0.9.0
|
|
55
54
|
Requires-Dist: tqdm<5,>=4.38
|
|
56
55
|
Requires-Dist: orjson~=3.9
|
|
56
|
+
Requires-Dist: chronos-forecasting<3,>=2.0.1
|
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.4.
|
|
59
|
-
Requires-Dist: autogluon.common==1.4.
|
|
60
|
-
Requires-Dist: autogluon.features==1.4.
|
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.
|
|
62
|
-
Provides-Extra: all
|
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.4.1b20251116
|
|
59
|
+
Requires-Dist: autogluon.common==1.4.1b20251116
|
|
60
|
+
Requires-Dist: autogluon.features==1.4.1b20251116
|
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251116
|
|
63
62
|
Provides-Extra: tests
|
|
64
63
|
Requires-Dist: pytest; extra == "tests"
|
|
65
64
|
Requires-Dist: ruff>=0.0.285; extra == "tests"
|
|
66
65
|
Requires-Dist: flaky<4,>=3.7; extra == "tests"
|
|
67
66
|
Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
|
|
67
|
+
Provides-Extra: toto
|
|
68
|
+
Requires-Dist: einops<1,>=0.7; extra == "toto"
|
|
69
|
+
Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "toto"
|
|
70
|
+
Provides-Extra: all
|
|
71
|
+
Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "all"
|
|
72
|
+
Requires-Dist: einops<1,>=0.7; extra == "all"
|
|
73
|
+
Dynamic: author
|
|
74
|
+
Dynamic: classifier
|
|
75
|
+
Dynamic: description
|
|
76
|
+
Dynamic: description-content-type
|
|
77
|
+
Dynamic: home-page
|
|
78
|
+
Dynamic: license
|
|
79
|
+
Dynamic: license-file
|
|
80
|
+
Dynamic: project-url
|
|
81
|
+
Dynamic: provides-extra
|
|
82
|
+
Dynamic: requires-dist
|
|
83
|
+
Dynamic: requires-python
|
|
84
|
+
Dynamic: summary
|
|
68
85
|
|
|
69
86
|
|
|
70
87
|
|
|
@@ -165,5 +182,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
165
182
|
## :classical_building: License
|
|
166
183
|
|
|
167
184
|
This library is licensed under the Apache 2.0 License.
|
|
168
|
-
|
|
169
|
-
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
autogluon.timeseries-1.4.1b20251116-py3.9-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
|
|
2
|
+
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
|
+
autogluon/timeseries/learner.py,sha256=XTQgfZs5ZQf_7mWUz-CNnavewrfNy3ENwtGMRJWwwPQ,13889
|
|
4
|
+
autogluon/timeseries/predictor.py,sha256=khISLnhVxTWMhE0WVCcTgm79K4Q9IuC-jHe01A9w1go,87468
|
|
5
|
+
autogluon/timeseries/regressor.py,sha256=X9ItbQ0e3GyLpKqusjMls5uavqw8w53AH0tXfSFmVno,12049
|
|
6
|
+
autogluon/timeseries/splitter.py,sha256=wK335v7cUAVPbo_9Bok1C6TFg0rB9SH3D031m0vn9-A,2342
|
|
7
|
+
autogluon/timeseries/version.py,sha256=i1AvtCpe0Hg2dM7cUojAmubBtfodplDajXyAsahYUGg,91
|
|
8
|
+
autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
|
|
9
|
+
autogluon/timeseries/configs/hyperparameter_presets.py,sha256=GbI2sd3uakWtaeaMyF7B5z_lmyfb6ToK6PZEUZTyG9w,2031
|
|
10
|
+
autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
|
|
11
|
+
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
12
|
+
autogluon/timeseries/dataset/ts_dataframe.py,sha256=49Itgcrjej-x22HYMCXPGD2gjCTRkyHpY2H83aD9U9k,52384
|
|
13
|
+
autogluon/timeseries/metrics/__init__.py,sha256=YJPXxsJ0tRDXq7p-sTZSLb0DuXMJH6sT1PgbZ3tMt30,3594
|
|
14
|
+
autogluon/timeseries/metrics/abstract.py,sha256=6jbluvHXfLc_cuK1Fx0ZYle2sR4WGG6YxFQhkor46Q8,11545
|
|
15
|
+
autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
|
|
16
|
+
autogluon/timeseries/metrics/quantile.py,sha256=3XLKn01R2roLPZqcyAcxAIy_O89hdr0b4IKHyzRrXYA,4621
|
|
17
|
+
autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
|
|
18
|
+
autogluon/timeseries/models/__init__.py,sha256=9NY9mqYaZe_7XB70M6psHARH-Lpkfroj4toUUPO9BmI,1339
|
|
19
|
+
autogluon/timeseries/models/registry.py,sha256=8n7W04ql0ckNQUzKcAW7bxreLI8wTAUTymACgLklH9M,2158
|
|
20
|
+
autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
|
|
21
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=97HOi7fRPxtx8Y9hq-xdJI-kLMp6Z-8LUSvcfBjXFsM,31978
|
|
22
|
+
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
|
23
|
+
autogluon/timeseries/models/abstract/tunable.py,sha256=jA6p-FPZkMva67B-1foqvHK-1rr0IdEfp9RvGW1WS9I,7155
|
|
24
|
+
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
|
25
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=3p3ukQxWN4WQHKt3ocmIb_5VlZfHwWJikQYUhSbDbtE,36457
|
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=keEW7M4SIsu3hC4EFuxcrj5s7QjF9k_7NBARuMXmYgA,23329
|
|
27
|
+
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XtxvaRsnmVF8strfvzEfWO5a_Q8p_wMyxHyglpO1R1c,2886
|
|
28
|
+
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
|
29
|
+
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
|
30
|
+
autogluon/timeseries/models/chronos/model.py,sha256=N6tjC8gSOLcL5eX29JYcOgfxlRATGI2qtTZucCD83t8,33437
|
|
31
|
+
autogluon/timeseries/models/chronos/utils.py,sha256=6y2wphSVYR1ylscSGdb3NvrTU4ZDgbx56Gluxht_j-k,14465
|
|
32
|
+
autogluon/timeseries/models/ensemble/__init__.py,sha256=9fthsA6ozZoTC7A33O0hGhiHAMzcAgG206-b4PIF9Yc,1070
|
|
33
|
+
autogluon/timeseries/models/ensemble/abstract.py,sha256=ePsz2lzmludxq4x_R1jjYgPvxMc0yqVRqHbU1Fq_pvo,4264
|
|
34
|
+
autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=xCzFHS9YTPsC0LPfhh8mOWzUTYxXGz1RJ15ox0Wgr98,159
|
|
35
|
+
autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=RC0PL4LvU7REF_FdQwqGT9TmeETNjFlHOJSBTeJrER8,10330
|
|
36
|
+
autogluon/timeseries/models/ensemble/array_based/models.py,sha256=yvqWgXZU2iKxSe4J-kbEYHA3Lah8bYUG2-hdMNMlLP4,1640
|
|
37
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=Fw5m77f8Z5Y6UrgYFsK7bi1fIgLWdqzvoWZqkfAVmmY,327
|
|
38
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=cYsmZcjUg84EROimaBUI3X-EPIT4xGyEEqHfHFbiGYQ,2615
|
|
39
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=oJezyB0Kv2GPChF-Ym9IsyRX4N3OYcUx32hejvMVMTI,5061
|
|
40
|
+
autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=2FnOiBDVgaldOnQcPD77mNzXJq7EDb1FGMpwjA3KAlE,4763
|
|
41
|
+
autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
|
|
42
|
+
autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=7vQVBK4TMBpESJ2EwnVklcljxmA2qWPQ9xpSREbtUwg,1543
|
|
43
|
+
autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=Kr8y0dlHRZg_q9AqBc3HIp1a5k_sXjrnQPlVi-63DCE,3066
|
|
44
|
+
autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=zXJFenn1XxNNvCp4TlmIq1Dx3pUDWjKG1K3HsejmDeY,7323
|
|
45
|
+
autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
|
|
46
|
+
autogluon/timeseries/models/gluonts/abstract.py,sha256=WKuUBy3ZF9VU87gaD9Us3c_xK2G1-XLeh1etVipf8hg,27769
|
|
47
|
+
autogluon/timeseries/models/gluonts/dataset.py,sha256=wfEp5SPuB8bam7iTpX3Tf0FGdXp5vnZtpgC9G4VJ4tw,5111
|
|
48
|
+
autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
|
|
49
|
+
autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
|
|
50
|
+
autogluon/timeseries/models/local/abstract_local_model.py,sha256=ASIZWBYs_cP0BwdrzHwblaNianPYcK5OqpqpiNxbxA0,11481
|
|
51
|
+
autogluon/timeseries/models/local/naive.py,sha256=xur3WWhLaS9Iix_p_yfaStbr58nL5K4rV0dReTm3BQQ,7496
|
|
52
|
+
autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736nHOvhSAgagYMc,4203
|
|
53
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=sZ6aEFzAyPNZX3rMULGWFht0Toapjb3EwHe5Rb76ZxA,33318
|
|
54
|
+
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
|
55
|
+
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=PBnNhDXPJJatRIm9FXg9DXU_0ZkGSs2yvEqfaTwBVxM,12356
|
|
56
|
+
autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
|
|
57
|
+
autogluon/timeseries/models/toto/dataloader.py,sha256=A5WHhnAe0J7fPo2KKG43hYLSrtUBGNweuqxMmClu3_A,3598
|
|
58
|
+
autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=Q8bVUaSlQVE4xFn_v7H0h_NFTxzHiM1V17KFytc50jk,4783
|
|
59
|
+
autogluon/timeseries/models/toto/model.py,sha256=3-5nR9qNqBFQLP6rNqBNlF4PBfnJHTcyjvz2GwdWwTg,8948
|
|
60
|
+
autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
|
|
61
|
+
autogluon/timeseries/models/toto/_internal/dataset.py,sha256=xuAEOhoQNJGMoCxkLVLrgpdoOJuukAYbrSrnrkwFob0,6103
|
|
62
|
+
autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=UXiohiySn_Gs8kLheeVcVCO8qoEtYlEfMH1tukAOHsk,18520
|
|
63
|
+
autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
|
|
64
|
+
autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=HLUFoyqR8EqxUMT1BK-AjI4ClS8au35LcUo7Jx7Xhm0,9394
|
|
65
|
+
autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=HUjpY2ZWed74UYKjp31erXF2ZHf3mmQMw_5_cCFeJGg,10104
|
|
66
|
+
autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
|
|
67
|
+
autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
|
|
68
|
+
autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=Ghngo08DjHbwbyp6b-GXCyLeYR10dH-Y_RMOTYwIxPY,3527
|
|
69
|
+
autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=opqyhHIZ6mPdPlrr3gA0qt9FFogIAYNDSq-P7CyQiqE,13728
|
|
70
|
+
autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=5c-ngj4XHKlaedz1NkgdfQgqD2kUGkMn4mtGH_lTXsE,12410
|
|
71
|
+
autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
|
|
72
|
+
autogluon/timeseries/trainer/ensemble_composer.py,sha256=Vc8LfhGVUED70Y4DcIs3Jhpiur2EFXqVubgInixcb2I,9751
|
|
73
|
+
autogluon/timeseries/trainer/model_set_builder.py,sha256=s6tozfND3lLfst6Vxa_oP_wgCmDapyCJYFmCjkEn-es,10788
|
|
74
|
+
autogluon/timeseries/trainer/prediction_cache.py,sha256=Vi6EbMiMheq_smA93U_MoMxYUV85RdPm0dvJFdsM8K4,5551
|
|
75
|
+
autogluon/timeseries/trainer/trainer.py,sha256=yAHbpTjGKzVBepzepKuXEF5SvCQXDbsnyURV6mKLqaU,52002
|
|
76
|
+
autogluon/timeseries/trainer/utils.py,sha256=_hSAWOYRZsp1qX2J6pJSxLrAAWwhVROc4_cvtfiTRzU,625
|
|
77
|
+
autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
|
|
78
|
+
autogluon/timeseries/transforms/covariate_scaler.py,sha256=8E5DDRLUQ3SCNDR2Yw8FZDx7DnWVdokKhNNxbp_S-9I,7017
|
|
79
|
+
autogluon/timeseries/transforms/target_scaler.py,sha256=tucfrWuXwTGv0WcJMo0bSk6--CkqGMDxiFPiUFl0RB8,6142
|
|
80
|
+
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
81
|
+
autogluon/timeseries/utils/features.py,sha256=GpemZRV7QiFRjZwP6NqpCVBg6m3KGBgp-eWUFzcpx54,22714
|
|
82
|
+
autogluon/timeseries/utils/forecast.py,sha256=y3VV1rVCxOuh_p-2U9ftT_I5oU4gQQovxlw14jRGwyM,2259
|
|
83
|
+
autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
|
|
84
|
+
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
|
85
|
+
autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
|
|
86
|
+
autogluon/timeseries/utils/datetime/lags.py,sha256=rjJtdBU0M41R1jwfmvCbo045s-6XBjhGVnGBQJ9-U1E,5997
|
|
87
|
+
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
|
88
|
+
autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
|
|
89
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
90
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
91
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/METADATA,sha256=2t9sW-KP5XI6x7WUxIkqXQqBCKRruP017VYThdeOPoA,12980
|
|
92
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
93
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
94
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
95
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
96
|
+
autogluon_timeseries-1.4.1b20251116.dist-info/RECORD,,
|
|
@@ -1,160 +0,0 @@
|
|
|
1
|
-
# Authors: Lorenzo Stella <stellalo@amazon.com>, Caner Turkmen <atturkm@amazon.com>
|
|
2
|
-
|
|
3
|
-
from enum import Enum
|
|
4
|
-
from pathlib import Path
|
|
5
|
-
from typing import TYPE_CHECKING, Optional, Union
|
|
6
|
-
|
|
7
|
-
import torch
|
|
8
|
-
|
|
9
|
-
from .utils import left_pad_and_stack_1D
|
|
10
|
-
|
|
11
|
-
if TYPE_CHECKING:
|
|
12
|
-
from transformers import PreTrainedModel
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
class ForecastType(Enum):
|
|
16
|
-
SAMPLES = "samples"
|
|
17
|
-
QUANTILES = "quantiles"
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
class PipelineRegistry(type):
|
|
21
|
-
REGISTRY: dict[str, "PipelineRegistry"] = {}
|
|
22
|
-
|
|
23
|
-
def __new__(cls, name, bases, attrs):
|
|
24
|
-
"""See, https://github.com/faif/python-patterns."""
|
|
25
|
-
new_cls = type.__new__(cls, name, bases, attrs)
|
|
26
|
-
if name is not None:
|
|
27
|
-
cls.REGISTRY[name] = new_cls
|
|
28
|
-
if aliases := attrs.get("_aliases"):
|
|
29
|
-
for alias in aliases:
|
|
30
|
-
cls.REGISTRY[alias] = new_cls
|
|
31
|
-
return new_cls
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
class BaseChronosPipeline(metaclass=PipelineRegistry):
|
|
35
|
-
forecast_type: ForecastType
|
|
36
|
-
dtypes = {
|
|
37
|
-
"bfloat16": torch.bfloat16,
|
|
38
|
-
"float32": torch.float32,
|
|
39
|
-
"float64": torch.float64,
|
|
40
|
-
}
|
|
41
|
-
|
|
42
|
-
def __init__(self, inner_model: "PreTrainedModel"):
|
|
43
|
-
"""
|
|
44
|
-
Parameters
|
|
45
|
-
----------
|
|
46
|
-
inner_model
|
|
47
|
-
A hugging-face transformers PreTrainedModel, e.g., T5ForConditionalGeneration
|
|
48
|
-
"""
|
|
49
|
-
# for easy access to the inner HF-style model
|
|
50
|
-
self.inner_model = inner_model
|
|
51
|
-
|
|
52
|
-
def _prepare_and_validate_context(self, context: Union[torch.Tensor, list[torch.Tensor]]):
|
|
53
|
-
if isinstance(context, list):
|
|
54
|
-
context = left_pad_and_stack_1D(context)
|
|
55
|
-
assert isinstance(context, torch.Tensor)
|
|
56
|
-
if context.ndim == 1:
|
|
57
|
-
context = context.unsqueeze(0)
|
|
58
|
-
assert context.ndim == 2
|
|
59
|
-
|
|
60
|
-
return context
|
|
61
|
-
|
|
62
|
-
def predict(
|
|
63
|
-
self,
|
|
64
|
-
context: Union[torch.Tensor, list[torch.Tensor]],
|
|
65
|
-
prediction_length: Optional[int] = None,
|
|
66
|
-
**kwargs,
|
|
67
|
-
):
|
|
68
|
-
"""
|
|
69
|
-
Get forecasts for the given time series.
|
|
70
|
-
|
|
71
|
-
Parameters
|
|
72
|
-
----------
|
|
73
|
-
context
|
|
74
|
-
Input series. This is either a 1D tensor, or a list
|
|
75
|
-
of 1D tensors, or a 2D tensor whose first dimension
|
|
76
|
-
is batch. In the latter case, use left-padding with
|
|
77
|
-
``torch.nan`` to align series of different lengths.
|
|
78
|
-
prediction_length
|
|
79
|
-
Time steps to predict. Defaults to a model-dependent
|
|
80
|
-
value if not given.
|
|
81
|
-
|
|
82
|
-
Returns
|
|
83
|
-
-------
|
|
84
|
-
forecasts
|
|
85
|
-
Tensor containing forecasts. The layout and meaning
|
|
86
|
-
of the forecasts values depends on ``self.forecast_type``.
|
|
87
|
-
"""
|
|
88
|
-
raise NotImplementedError()
|
|
89
|
-
|
|
90
|
-
def predict_quantiles(
|
|
91
|
-
self, context: torch.Tensor, prediction_length: int, quantile_levels: list[float], **kwargs
|
|
92
|
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
93
|
-
"""
|
|
94
|
-
Get quantile and mean forecasts for given time series. All
|
|
95
|
-
predictions are returned on the CPU.
|
|
96
|
-
|
|
97
|
-
Parameters
|
|
98
|
-
----------
|
|
99
|
-
context
|
|
100
|
-
Input series. This is either a 1D tensor, or a list
|
|
101
|
-
of 1D tensors, or a 2D tensor whose first dimension
|
|
102
|
-
is batch. In the latter case, use left-padding with
|
|
103
|
-
``torch.nan`` to align series of different lengths.
|
|
104
|
-
prediction_length
|
|
105
|
-
Time steps to predict. Defaults to a model-dependent
|
|
106
|
-
value if not given.
|
|
107
|
-
quantile_levels
|
|
108
|
-
Quantile levels to compute
|
|
109
|
-
|
|
110
|
-
Returns
|
|
111
|
-
-------
|
|
112
|
-
quantiles
|
|
113
|
-
Tensor containing quantile forecasts. Shape
|
|
114
|
-
(batch_size, prediction_length, num_quantiles)
|
|
115
|
-
mean
|
|
116
|
-
Tensor containing mean (point) forecasts. Shape
|
|
117
|
-
(batch_size, prediction_length)
|
|
118
|
-
"""
|
|
119
|
-
raise NotImplementedError()
|
|
120
|
-
|
|
121
|
-
@classmethod
|
|
122
|
-
def from_pretrained(
|
|
123
|
-
cls,
|
|
124
|
-
pretrained_model_name_or_path: Union[str, Path],
|
|
125
|
-
*model_args,
|
|
126
|
-
force=False,
|
|
127
|
-
**kwargs,
|
|
128
|
-
):
|
|
129
|
-
"""
|
|
130
|
-
Load the model, either from a local path or from the HuggingFace Hub.
|
|
131
|
-
Supports the same arguments as ``AutoConfig`` and ``AutoModel``
|
|
132
|
-
from ``transformers``.
|
|
133
|
-
|
|
134
|
-
When a local path is provided, supports both a folder or a .tar.gz archive.
|
|
135
|
-
"""
|
|
136
|
-
from transformers import AutoConfig
|
|
137
|
-
|
|
138
|
-
kwargs.setdefault("resume_download", None) # silence huggingface_hub warning
|
|
139
|
-
if str(pretrained_model_name_or_path).startswith("s3://"):
|
|
140
|
-
from .utils import cache_model_from_s3
|
|
141
|
-
|
|
142
|
-
local_model_path = cache_model_from_s3(str(pretrained_model_name_or_path), force=force)
|
|
143
|
-
return cls.from_pretrained(local_model_path, *model_args, **kwargs)
|
|
144
|
-
|
|
145
|
-
torch_dtype = kwargs.get("torch_dtype", "auto")
|
|
146
|
-
if torch_dtype != "auto" and isinstance(torch_dtype, str):
|
|
147
|
-
kwargs["torch_dtype"] = cls.dtypes[torch_dtype]
|
|
148
|
-
|
|
149
|
-
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
|
150
|
-
is_valid_config = hasattr(config, "chronos_pipeline_class") or hasattr(config, "chronos_config")
|
|
151
|
-
|
|
152
|
-
if not is_valid_config:
|
|
153
|
-
raise ValueError("Not a Chronos config file")
|
|
154
|
-
|
|
155
|
-
pipeline_class_name = getattr(config, "chronos_pipeline_class", "ChronosPipeline")
|
|
156
|
-
class_: Optional[BaseChronosPipeline] = PipelineRegistry.REGISTRY.get(pipeline_class_name) # type: ignore
|
|
157
|
-
if class_ is None:
|
|
158
|
-
raise ValueError(f"Trying to load unknown pipeline class: {pipeline_class_name}")
|
|
159
|
-
|
|
160
|
-
return class_.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|