autogluon.timeseries 1.4.1b20250830__py3-none-any.whl → 1.4.1b20251116__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. autogluon/timeseries/dataset/ts_dataframe.py +66 -53
  2. autogluon/timeseries/learner.py +5 -4
  3. autogluon/timeseries/metrics/quantile.py +1 -1
  4. autogluon/timeseries/metrics/utils.py +4 -4
  5. autogluon/timeseries/models/__init__.py +2 -0
  6. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +28 -36
  7. autogluon/timeseries/models/autogluon_tabular/per_step.py +14 -5
  8. autogluon/timeseries/models/autogluon_tabular/transforms.py +9 -7
  9. autogluon/timeseries/models/chronos/model.py +104 -68
  10. autogluon/timeseries/models/chronos/{pipeline/utils.py → utils.py} +64 -32
  11. autogluon/timeseries/models/ensemble/__init__.py +29 -2
  12. autogluon/timeseries/models/ensemble/abstract.py +1 -37
  13. autogluon/timeseries/models/ensemble/array_based/__init__.py +3 -0
  14. autogluon/timeseries/models/ensemble/array_based/abstract.py +247 -0
  15. autogluon/timeseries/models/ensemble/array_based/models.py +50 -0
  16. autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py +10 -0
  17. autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py +87 -0
  18. autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py +133 -0
  19. autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py +141 -0
  20. autogluon/timeseries/models/ensemble/weighted/__init__.py +8 -0
  21. autogluon/timeseries/models/ensemble/weighted/abstract.py +41 -0
  22. autogluon/timeseries/models/ensemble/{basic.py → weighted/basic.py} +0 -10
  23. autogluon/timeseries/models/gluonts/abstract.py +2 -2
  24. autogluon/timeseries/models/gluonts/dataset.py +2 -2
  25. autogluon/timeseries/models/local/abstract_local_model.py +2 -2
  26. autogluon/timeseries/models/multi_window/multi_window_model.py +1 -1
  27. autogluon/timeseries/models/toto/__init__.py +3 -0
  28. autogluon/timeseries/models/toto/_internal/__init__.py +9 -0
  29. autogluon/timeseries/models/toto/_internal/backbone/__init__.py +3 -0
  30. autogluon/timeseries/models/toto/_internal/backbone/attention.py +197 -0
  31. autogluon/timeseries/models/toto/_internal/backbone/backbone.py +262 -0
  32. autogluon/timeseries/models/toto/_internal/backbone/distribution.py +70 -0
  33. autogluon/timeseries/models/toto/_internal/backbone/kvcache.py +136 -0
  34. autogluon/timeseries/models/toto/_internal/backbone/rope.py +94 -0
  35. autogluon/timeseries/models/toto/_internal/backbone/scaler.py +306 -0
  36. autogluon/timeseries/models/toto/_internal/backbone/transformer.py +333 -0
  37. autogluon/timeseries/models/toto/_internal/dataset.py +165 -0
  38. autogluon/timeseries/models/toto/_internal/forecaster.py +423 -0
  39. autogluon/timeseries/models/toto/dataloader.py +108 -0
  40. autogluon/timeseries/models/toto/hf_pretrained_model.py +119 -0
  41. autogluon/timeseries/models/toto/model.py +236 -0
  42. autogluon/timeseries/predictor.py +10 -26
  43. autogluon/timeseries/regressor.py +9 -7
  44. autogluon/timeseries/splitter.py +1 -25
  45. autogluon/timeseries/trainer/ensemble_composer.py +250 -0
  46. autogluon/timeseries/trainer/trainer.py +124 -193
  47. autogluon/timeseries/trainer/utils.py +18 -0
  48. autogluon/timeseries/transforms/covariate_scaler.py +1 -1
  49. autogluon/timeseries/transforms/target_scaler.py +7 -7
  50. autogluon/timeseries/utils/features.py +9 -5
  51. autogluon/timeseries/utils/forecast.py +5 -5
  52. autogluon/timeseries/version.py +1 -1
  53. autogluon.timeseries-1.4.1b20251116-py3.9-nspkg.pth +1 -0
  54. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/METADATA +28 -13
  55. autogluon_timeseries-1.4.1b20251116.dist-info/RECORD +96 -0
  56. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/WHEEL +1 -1
  57. autogluon/timeseries/evaluator.py +0 -6
  58. autogluon/timeseries/models/chronos/pipeline/__init__.py +0 -10
  59. autogluon/timeseries/models/chronos/pipeline/base.py +0 -160
  60. autogluon/timeseries/models/chronos/pipeline/chronos.py +0 -544
  61. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +0 -530
  62. autogluon.timeseries-1.4.1b20250830-py3.9-nspkg.pth +0 -1
  63. autogluon.timeseries-1.4.1b20250830.dist-info/RECORD +0 -75
  64. /autogluon/timeseries/models/ensemble/{greedy.py → weighted/greedy.py} +0 -0
  65. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/LICENSE +0 -0
  66. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info/licenses}/NOTICE +0 -0
  67. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/namespace_packages.txt +0 -0
  68. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/top_level.txt +0 -0
  69. {autogluon.timeseries-1.4.1b20250830.dist-info → autogluon_timeseries-1.4.1b20251116.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20250830
3
+ Version: 1.4.1b20251116
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -34,15 +33,15 @@ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
34
  Requires-Python: >=3.9, <3.13
36
35
  Description-Content-Type: text/markdown
37
- License-File: ../LICENSE
38
- License-File: ../NOTICE
36
+ License-File: LICENSE
37
+ License-File: NOTICE
39
38
  Requires-Dist: joblib<1.7,>=1.2
40
39
  Requires-Dist: numpy<2.4.0,>=1.25.0
41
40
  Requires-Dist: scipy<1.17,>=1.5.4
42
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
43
42
  Requires-Dist: torch<2.8,>=2.6
44
43
  Requires-Dist: lightning<2.8,>=2.5.1
45
- Requires-Dist: pytorch-lightning
44
+ Requires-Dist: pytorch_lightning
46
45
  Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
47
46
  Requires-Dist: accelerate<2.0,>=0.34.0
48
47
  Requires-Dist: gluonts<0.17,>=0.15.0
@@ -54,17 +53,35 @@ Requires-Dist: coreforecast<0.0.17,>=0.0.12
54
53
  Requires-Dist: fugue>=0.9.0
55
54
  Requires-Dist: tqdm<5,>=4.38
56
55
  Requires-Dist: orjson~=3.9
56
+ Requires-Dist: chronos-forecasting<3,>=2.0.1
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.4.1b20250830
59
- Requires-Dist: autogluon.common==1.4.1b20250830
60
- Requires-Dist: autogluon.features==1.4.1b20250830
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250830
62
- Provides-Extra: all
58
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20251116
59
+ Requires-Dist: autogluon.common==1.4.1b20251116
60
+ Requires-Dist: autogluon.features==1.4.1b20251116
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20251116
63
62
  Provides-Extra: tests
64
63
  Requires-Dist: pytest; extra == "tests"
65
64
  Requires-Dist: ruff>=0.0.285; extra == "tests"
66
65
  Requires-Dist: flaky<4,>=3.7; extra == "tests"
67
66
  Requires-Dist: pytest-timeout<3,>=2.1; extra == "tests"
67
+ Provides-Extra: toto
68
+ Requires-Dist: einops<1,>=0.7; extra == "toto"
69
+ Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "toto"
70
+ Provides-Extra: all
71
+ Requires-Dist: rotary-embedding-torch<1,>=0.8; extra == "all"
72
+ Requires-Dist: einops<1,>=0.7; extra == "all"
73
+ Dynamic: author
74
+ Dynamic: classifier
75
+ Dynamic: description
76
+ Dynamic: description-content-type
77
+ Dynamic: home-page
78
+ Dynamic: license
79
+ Dynamic: license-file
80
+ Dynamic: project-url
81
+ Dynamic: provides-extra
82
+ Dynamic: requires-dist
83
+ Dynamic: requires-python
84
+ Dynamic: summary
68
85
 
69
86
 
70
87
 
@@ -165,5 +182,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
165
182
  ## :classical_building: License
166
183
 
167
184
  This library is licensed under the Apache 2.0 License.
168
-
169
-
@@ -0,0 +1,96 @@
1
+ autogluon.timeseries-1.4.1b20251116-py3.9-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
+ autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
+ autogluon/timeseries/learner.py,sha256=XTQgfZs5ZQf_7mWUz-CNnavewrfNy3ENwtGMRJWwwPQ,13889
4
+ autogluon/timeseries/predictor.py,sha256=khISLnhVxTWMhE0WVCcTgm79K4Q9IuC-jHe01A9w1go,87468
5
+ autogluon/timeseries/regressor.py,sha256=X9ItbQ0e3GyLpKqusjMls5uavqw8w53AH0tXfSFmVno,12049
6
+ autogluon/timeseries/splitter.py,sha256=wK335v7cUAVPbo_9Bok1C6TFg0rB9SH3D031m0vn9-A,2342
7
+ autogluon/timeseries/version.py,sha256=i1AvtCpe0Hg2dM7cUojAmubBtfodplDajXyAsahYUGg,91
8
+ autogluon/timeseries/configs/__init__.py,sha256=wiLBwxZkDTQBJkSJ9-xz3p_yJxX0dbHe108dS1P5O6A,183
9
+ autogluon/timeseries/configs/hyperparameter_presets.py,sha256=GbI2sd3uakWtaeaMyF7B5z_lmyfb6ToK6PZEUZTyG9w,2031
10
+ autogluon/timeseries/configs/predictor_presets.py,sha256=B5HFHIelh91hhG0YYE5SJ7_14P7sylFAABgHX8n_53M,2712
11
+ autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=49Itgcrjej-x22HYMCXPGD2gjCTRkyHpY2H83aD9U9k,52384
13
+ autogluon/timeseries/metrics/__init__.py,sha256=YJPXxsJ0tRDXq7p-sTZSLb0DuXMJH6sT1PgbZ3tMt30,3594
14
+ autogluon/timeseries/metrics/abstract.py,sha256=6jbluvHXfLc_cuK1Fx0ZYle2sR4WGG6YxFQhkor46Q8,11545
15
+ autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
16
+ autogluon/timeseries/metrics/quantile.py,sha256=3XLKn01R2roLPZqcyAcxAIy_O89hdr0b4IKHyzRrXYA,4621
17
+ autogluon/timeseries/metrics/utils.py,sha256=_Nz6GLbs91WhqN1PoA53wD4xEEuPIQ0juV5l9rDmkFo,970
18
+ autogluon/timeseries/models/__init__.py,sha256=9NY9mqYaZe_7XB70M6psHARH-Lpkfroj4toUUPO9BmI,1339
19
+ autogluon/timeseries/models/registry.py,sha256=8n7W04ql0ckNQUzKcAW7bxreLI8wTAUTymACgLklH9M,2158
20
+ autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
21
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=97HOi7fRPxtx8Y9hq-xdJI-kLMp6Z-8LUSvcfBjXFsM,31978
22
+ autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
23
+ autogluon/timeseries/models/abstract/tunable.py,sha256=jA6p-FPZkMva67B-1foqvHK-1rr0IdEfp9RvGW1WS9I,7155
24
+ autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
25
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=3p3ukQxWN4WQHKt3ocmIb_5VlZfHwWJikQYUhSbDbtE,36457
26
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=keEW7M4SIsu3hC4EFuxcrj5s7QjF9k_7NBARuMXmYgA,23329
27
+ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XtxvaRsnmVF8strfvzEfWO5a_Q8p_wMyxHyglpO1R1c,2886
28
+ autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
+ autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
30
+ autogluon/timeseries/models/chronos/model.py,sha256=N6tjC8gSOLcL5eX29JYcOgfxlRATGI2qtTZucCD83t8,33437
31
+ autogluon/timeseries/models/chronos/utils.py,sha256=6y2wphSVYR1ylscSGdb3NvrTU4ZDgbx56Gluxht_j-k,14465
32
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=9fthsA6ozZoTC7A33O0hGhiHAMzcAgG206-b4PIF9Yc,1070
33
+ autogluon/timeseries/models/ensemble/abstract.py,sha256=ePsz2lzmludxq4x_R1jjYgPvxMc0yqVRqHbU1Fq_pvo,4264
34
+ autogluon/timeseries/models/ensemble/array_based/__init__.py,sha256=xCzFHS9YTPsC0LPfhh8mOWzUTYxXGz1RJ15ox0Wgr98,159
35
+ autogluon/timeseries/models/ensemble/array_based/abstract.py,sha256=RC0PL4LvU7REF_FdQwqGT9TmeETNjFlHOJSBTeJrER8,10330
36
+ autogluon/timeseries/models/ensemble/array_based/models.py,sha256=yvqWgXZU2iKxSe4J-kbEYHA3Lah8bYUG2-hdMNMlLP4,1640
37
+ autogluon/timeseries/models/ensemble/array_based/regressor/__init__.py,sha256=Fw5m77f8Z5Y6UrgYFsK7bi1fIgLWdqzvoWZqkfAVmmY,327
38
+ autogluon/timeseries/models/ensemble/array_based/regressor/abstract.py,sha256=cYsmZcjUg84EROimaBUI3X-EPIT4xGyEEqHfHFbiGYQ,2615
39
+ autogluon/timeseries/models/ensemble/array_based/regressor/per_quantile_tabular.py,sha256=oJezyB0Kv2GPChF-Ym9IsyRX4N3OYcUx32hejvMVMTI,5061
40
+ autogluon/timeseries/models/ensemble/array_based/regressor/tabular.py,sha256=2FnOiBDVgaldOnQcPD77mNzXJq7EDb1FGMpwjA3KAlE,4763
41
+ autogluon/timeseries/models/ensemble/weighted/__init__.py,sha256=_LipTsDnYvTFmjZWsb1Vrm-eALsVVfUlF2gOpcaqE2Q,206
42
+ autogluon/timeseries/models/ensemble/weighted/abstract.py,sha256=7vQVBK4TMBpESJ2EwnVklcljxmA2qWPQ9xpSREbtUwg,1543
43
+ autogluon/timeseries/models/ensemble/weighted/basic.py,sha256=Kr8y0dlHRZg_q9AqBc3HIp1a5k_sXjrnQPlVi-63DCE,3066
44
+ autogluon/timeseries/models/ensemble/weighted/greedy.py,sha256=zXJFenn1XxNNvCp4TlmIq1Dx3pUDWjKG1K3HsejmDeY,7323
45
+ autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
46
+ autogluon/timeseries/models/gluonts/abstract.py,sha256=WKuUBy3ZF9VU87gaD9Us3c_xK2G1-XLeh1etVipf8hg,27769
47
+ autogluon/timeseries/models/gluonts/dataset.py,sha256=wfEp5SPuB8bam7iTpX3Tf0FGdXp5vnZtpgC9G4VJ4tw,5111
48
+ autogluon/timeseries/models/gluonts/models.py,sha256=1Z3x3-jVoae5X4cSnDIgJMvTJ9_O94aDSW8HEnBaL5k,25907
49
+ autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
50
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=ASIZWBYs_cP0BwdrzHwblaNianPYcK5OqpqpiNxbxA0,11481
51
+ autogluon/timeseries/models/local/naive.py,sha256=xur3WWhLaS9Iix_p_yfaStbr58nL5K4rV0dReTm3BQQ,7496
52
+ autogluon/timeseries/models/local/npts.py,sha256=VRZk5tEJOIentt0tLM6lxyoU8US736nHOvhSAgagYMc,4203
53
+ autogluon/timeseries/models/local/statsforecast.py,sha256=sZ6aEFzAyPNZX3rMULGWFht0Toapjb3EwHe5Rb76ZxA,33318
54
+ autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
55
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=PBnNhDXPJJatRIm9FXg9DXU_0ZkGSs2yvEqfaTwBVxM,12356
56
+ autogluon/timeseries/models/toto/__init__.py,sha256=rQaVjZJV5ZsJGC0jhQ6CA4nYeXdV1KtlyDz2i2usQnY,54
57
+ autogluon/timeseries/models/toto/dataloader.py,sha256=A5WHhnAe0J7fPo2KKG43hYLSrtUBGNweuqxMmClu3_A,3598
58
+ autogluon/timeseries/models/toto/hf_pretrained_model.py,sha256=Q8bVUaSlQVE4xFn_v7H0h_NFTxzHiM1V17KFytc50jk,4783
59
+ autogluon/timeseries/models/toto/model.py,sha256=3-5nR9qNqBFQLP6rNqBNlF4PBfnJHTcyjvz2GwdWwTg,8948
60
+ autogluon/timeseries/models/toto/_internal/__init__.py,sha256=tKkiux9bD2Xu0AuVyTEx_sNOZutcluC7-d7tn7wsmec,193
61
+ autogluon/timeseries/models/toto/_internal/dataset.py,sha256=xuAEOhoQNJGMoCxkLVLrgpdoOJuukAYbrSrnrkwFob0,6103
62
+ autogluon/timeseries/models/toto/_internal/forecaster.py,sha256=UXiohiySn_Gs8kLheeVcVCO8qoEtYlEfMH1tukAOHsk,18520
63
+ autogluon/timeseries/models/toto/_internal/backbone/__init__.py,sha256=hq5W62boH6HiEP8z3sHkI6_KM-Dd6TkDfWDm6DYE3J8,63
64
+ autogluon/timeseries/models/toto/_internal/backbone/attention.py,sha256=HLUFoyqR8EqxUMT1BK-AjI4ClS8au35LcUo7Jx7Xhm0,9394
65
+ autogluon/timeseries/models/toto/_internal/backbone/backbone.py,sha256=HUjpY2ZWed74UYKjp31erXF2ZHf3mmQMw_5_cCFeJGg,10104
66
+ autogluon/timeseries/models/toto/_internal/backbone/distribution.py,sha256=8NXiaEVLuvjTW7L1t1RzooZFNERWv50zyLddbAwuYpo,2502
67
+ autogluon/timeseries/models/toto/_internal/backbone/kvcache.py,sha256=QSVCrnbS2oD7wkJodZbP9XMVmrfCH6M3Zp44siF28Fg,5399
68
+ autogluon/timeseries/models/toto/_internal/backbone/rope.py,sha256=Ghngo08DjHbwbyp6b-GXCyLeYR10dH-Y_RMOTYwIxPY,3527
69
+ autogluon/timeseries/models/toto/_internal/backbone/scaler.py,sha256=opqyhHIZ6mPdPlrr3gA0qt9FFogIAYNDSq-P7CyQiqE,13728
70
+ autogluon/timeseries/models/toto/_internal/backbone/transformer.py,sha256=5c-ngj4XHKlaedz1NkgdfQgqD2kUGkMn4mtGH_lTXsE,12410
71
+ autogluon/timeseries/trainer/__init__.py,sha256=_tw3iioJfvtIV7wnjtEMv0yS8oabmCFxDnGRodYE7RI,72
72
+ autogluon/timeseries/trainer/ensemble_composer.py,sha256=Vc8LfhGVUED70Y4DcIs3Jhpiur2EFXqVubgInixcb2I,9751
73
+ autogluon/timeseries/trainer/model_set_builder.py,sha256=s6tozfND3lLfst6Vxa_oP_wgCmDapyCJYFmCjkEn-es,10788
74
+ autogluon/timeseries/trainer/prediction_cache.py,sha256=Vi6EbMiMheq_smA93U_MoMxYUV85RdPm0dvJFdsM8K4,5551
75
+ autogluon/timeseries/trainer/trainer.py,sha256=yAHbpTjGKzVBepzepKuXEF5SvCQXDbsnyURV6mKLqaU,52002
76
+ autogluon/timeseries/trainer/utils.py,sha256=_hSAWOYRZsp1qX2J6pJSxLrAAWwhVROc4_cvtfiTRzU,625
77
+ autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
78
+ autogluon/timeseries/transforms/covariate_scaler.py,sha256=8E5DDRLUQ3SCNDR2Yw8FZDx7DnWVdokKhNNxbp_S-9I,7017
79
+ autogluon/timeseries/transforms/target_scaler.py,sha256=tucfrWuXwTGv0WcJMo0bSk6--CkqGMDxiFPiUFl0RB8,6142
80
+ autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
81
+ autogluon/timeseries/utils/features.py,sha256=GpemZRV7QiFRjZwP6NqpCVBg6m3KGBgp-eWUFzcpx54,22714
82
+ autogluon/timeseries/utils/forecast.py,sha256=y3VV1rVCxOuh_p-2U9ftT_I5oU4gQQovxlw14jRGwyM,2259
83
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
84
+ autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
85
+ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
86
+ autogluon/timeseries/utils/datetime/lags.py,sha256=rjJtdBU0M41R1jwfmvCbo045s-6XBjhGVnGBQJ9-U1E,5997
87
+ autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
88
+ autogluon/timeseries/utils/datetime/time_features.py,sha256=kEOFls4Nzh8nO0Pcz1DwLsC_NA3hMI4JUlZI3kuvuts,2666
89
+ autogluon_timeseries-1.4.1b20251116.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
90
+ autogluon_timeseries-1.4.1b20251116.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
91
+ autogluon_timeseries-1.4.1b20251116.dist-info/METADATA,sha256=2t9sW-KP5XI6x7WUxIkqXQqBCKRruP017VYThdeOPoA,12980
92
+ autogluon_timeseries-1.4.1b20251116.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
93
+ autogluon_timeseries-1.4.1b20251116.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
94
+ autogluon_timeseries-1.4.1b20251116.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
95
+ autogluon_timeseries-1.4.1b20251116.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
96
+ autogluon_timeseries-1.4.1b20251116.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.1)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,6 +0,0 @@
1
- class TimeSeriesEvaluator:
2
- def __init__(self, *args, **kwargs):
3
- raise ValueError(
4
- "`TimeSeriesEvaluator` has been deprecated. "
5
- "Please use the metrics defined in `autogluon.timeseries.metrics` instead."
6
- )
@@ -1,10 +0,0 @@
1
- from .base import BaseChronosPipeline, ForecastType
2
- from .chronos import ChronosPipeline
3
- from .chronos_bolt import ChronosBoltPipeline
4
-
5
- __all__ = [
6
- "BaseChronosPipeline",
7
- "ChronosBoltPipeline",
8
- "ChronosPipeline",
9
- "ForecastType",
10
- ]
@@ -1,160 +0,0 @@
1
- # Authors: Lorenzo Stella <stellalo@amazon.com>, Caner Turkmen <atturkm@amazon.com>
2
-
3
- from enum import Enum
4
- from pathlib import Path
5
- from typing import TYPE_CHECKING, Optional, Union
6
-
7
- import torch
8
-
9
- from .utils import left_pad_and_stack_1D
10
-
11
- if TYPE_CHECKING:
12
- from transformers import PreTrainedModel
13
-
14
-
15
- class ForecastType(Enum):
16
- SAMPLES = "samples"
17
- QUANTILES = "quantiles"
18
-
19
-
20
- class PipelineRegistry(type):
21
- REGISTRY: dict[str, "PipelineRegistry"] = {}
22
-
23
- def __new__(cls, name, bases, attrs):
24
- """See, https://github.com/faif/python-patterns."""
25
- new_cls = type.__new__(cls, name, bases, attrs)
26
- if name is not None:
27
- cls.REGISTRY[name] = new_cls
28
- if aliases := attrs.get("_aliases"):
29
- for alias in aliases:
30
- cls.REGISTRY[alias] = new_cls
31
- return new_cls
32
-
33
-
34
- class BaseChronosPipeline(metaclass=PipelineRegistry):
35
- forecast_type: ForecastType
36
- dtypes = {
37
- "bfloat16": torch.bfloat16,
38
- "float32": torch.float32,
39
- "float64": torch.float64,
40
- }
41
-
42
- def __init__(self, inner_model: "PreTrainedModel"):
43
- """
44
- Parameters
45
- ----------
46
- inner_model
47
- A hugging-face transformers PreTrainedModel, e.g., T5ForConditionalGeneration
48
- """
49
- # for easy access to the inner HF-style model
50
- self.inner_model = inner_model
51
-
52
- def _prepare_and_validate_context(self, context: Union[torch.Tensor, list[torch.Tensor]]):
53
- if isinstance(context, list):
54
- context = left_pad_and_stack_1D(context)
55
- assert isinstance(context, torch.Tensor)
56
- if context.ndim == 1:
57
- context = context.unsqueeze(0)
58
- assert context.ndim == 2
59
-
60
- return context
61
-
62
- def predict(
63
- self,
64
- context: Union[torch.Tensor, list[torch.Tensor]],
65
- prediction_length: Optional[int] = None,
66
- **kwargs,
67
- ):
68
- """
69
- Get forecasts for the given time series.
70
-
71
- Parameters
72
- ----------
73
- context
74
- Input series. This is either a 1D tensor, or a list
75
- of 1D tensors, or a 2D tensor whose first dimension
76
- is batch. In the latter case, use left-padding with
77
- ``torch.nan`` to align series of different lengths.
78
- prediction_length
79
- Time steps to predict. Defaults to a model-dependent
80
- value if not given.
81
-
82
- Returns
83
- -------
84
- forecasts
85
- Tensor containing forecasts. The layout and meaning
86
- of the forecasts values depends on ``self.forecast_type``.
87
- """
88
- raise NotImplementedError()
89
-
90
- def predict_quantiles(
91
- self, context: torch.Tensor, prediction_length: int, quantile_levels: list[float], **kwargs
92
- ) -> tuple[torch.Tensor, torch.Tensor]:
93
- """
94
- Get quantile and mean forecasts for given time series. All
95
- predictions are returned on the CPU.
96
-
97
- Parameters
98
- ----------
99
- context
100
- Input series. This is either a 1D tensor, or a list
101
- of 1D tensors, or a 2D tensor whose first dimension
102
- is batch. In the latter case, use left-padding with
103
- ``torch.nan`` to align series of different lengths.
104
- prediction_length
105
- Time steps to predict. Defaults to a model-dependent
106
- value if not given.
107
- quantile_levels
108
- Quantile levels to compute
109
-
110
- Returns
111
- -------
112
- quantiles
113
- Tensor containing quantile forecasts. Shape
114
- (batch_size, prediction_length, num_quantiles)
115
- mean
116
- Tensor containing mean (point) forecasts. Shape
117
- (batch_size, prediction_length)
118
- """
119
- raise NotImplementedError()
120
-
121
- @classmethod
122
- def from_pretrained(
123
- cls,
124
- pretrained_model_name_or_path: Union[str, Path],
125
- *model_args,
126
- force=False,
127
- **kwargs,
128
- ):
129
- """
130
- Load the model, either from a local path or from the HuggingFace Hub.
131
- Supports the same arguments as ``AutoConfig`` and ``AutoModel``
132
- from ``transformers``.
133
-
134
- When a local path is provided, supports both a folder or a .tar.gz archive.
135
- """
136
- from transformers import AutoConfig
137
-
138
- kwargs.setdefault("resume_download", None) # silence huggingface_hub warning
139
- if str(pretrained_model_name_or_path).startswith("s3://"):
140
- from .utils import cache_model_from_s3
141
-
142
- local_model_path = cache_model_from_s3(str(pretrained_model_name_or_path), force=force)
143
- return cls.from_pretrained(local_model_path, *model_args, **kwargs)
144
-
145
- torch_dtype = kwargs.get("torch_dtype", "auto")
146
- if torch_dtype != "auto" and isinstance(torch_dtype, str):
147
- kwargs["torch_dtype"] = cls.dtypes[torch_dtype]
148
-
149
- config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
150
- is_valid_config = hasattr(config, "chronos_pipeline_class") or hasattr(config, "chronos_config")
151
-
152
- if not is_valid_config:
153
- raise ValueError("Not a Chronos config file")
154
-
155
- pipeline_class_name = getattr(config, "chronos_pipeline_class", "ChronosPipeline")
156
- class_: Optional[BaseChronosPipeline] = PipelineRegistry.REGISTRY.get(pipeline_class_name) # type: ignore
157
- if class_ is None:
158
- raise ValueError(f"Trying to load unknown pipeline class: {pipeline_class_name}")
159
-
160
- return class_.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)