autogluon.timeseries 1.4.1b20250816__py3-none-any.whl → 1.4.1b20250819__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -427,7 +427,7 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
427
427
  @property
428
428
  def allowed_hyperparameters(self) -> List[str]:
429
429
  """List of hyperparameters allowed by the model."""
430
- return ["target_scaler", "covariate_regressor"]
430
+ return ["target_scaler", "covariate_regressor", "covariate_scaler"]
431
431
 
432
432
  def fit(
433
433
  self,
@@ -608,11 +608,13 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
608
608
  predictions = self._predict(data=data, known_covariates=known_covariates, **kwargs)
609
609
  self.covariate_regressor = covariate_regressor
610
610
 
611
- column_order = pd.Index(["mean"] + [str(q) for q in self.quantile_levels])
611
+ # Ensure that 'mean' is the leading column. Trailing columns might not match quantile_levels if self is
612
+ # a MultiWindowBacktestingModel and base_model.must_drop_median=True
613
+ column_order = pd.Index(["mean"] + [col for col in predictions.columns if col != "mean"])
612
614
  if not predictions.columns.equals(column_order):
613
615
  predictions = predictions.reindex(columns=column_order)
614
616
 
615
- # "0.5" might be missing from the quantiles if self is a wrapper (MultiWindowBacktestingModel or ensemble)
617
+ # "0.5" might be missing from the quantiles if self is a MultiWindowBacktestingModel
616
618
  if "0.5" in predictions.columns:
617
619
  if self.eval_metric.optimized_by_median:
618
620
  predictions["mean"] = predictions["0.5"]
@@ -296,7 +296,10 @@ class TimeSeriesPredictor:
296
296
  df: TimeSeriesDataFrame = self._to_data_frame(data, name=name)
297
297
  if not pd.api.types.is_numeric_dtype(df[self.target]):
298
298
  raise ValueError(f"Target column {name}['{self.target}'] has a non-numeric dtype {df[self.target].dtype}")
299
+ # Assign makes a copy, so future operations can be performed in-place
299
300
  df = df.assign(**{self.target: df[self.target].astype("float64")})
301
+ df.replace(to_replace=[float("-inf"), float("inf")], value=float("nan"), inplace=True)
302
+
300
303
  # MultiIndex.is_monotonic_increasing checks if index is sorted by ["item_id", "timestamp"]
301
304
  if not df.index.is_monotonic_increasing:
302
305
  df = df.sort_index()
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250816"
3
+ __version__ = "1.4.1b20250819"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.4.1b20250816
3
+ Version: 1.4.1b20250819
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.4.1b20250816
59
- Requires-Dist: autogluon.common==1.4.1b20250816
60
- Requires-Dist: autogluon.features==1.4.1b20250816
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250816
58
+ Requires-Dist: autogluon.core[raytune]==1.4.1b20250819
59
+ Requires-Dist: autogluon.common==1.4.1b20250819
60
+ Requires-Dist: autogluon.features==1.4.1b20250819
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.1b20250819
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -1,12 +1,12 @@
1
- autogluon.timeseries-1.4.1b20250816-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.4.1b20250819-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
- autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3WSAJs,88273
5
+ autogluon/timeseries/predictor.py,sha256=3FysrdmmR6NhxwukFIr6WbEL5zfW9nygKPDyKrZ1pRE,88447
6
6
  autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=Ta5rHdst0MO4epGmJROmWPn4-oUAuDKSiu4ZuKMDn9A,91
9
+ autogluon/timeseries/version.py,sha256=_At-VO2GZo99rrdcQWAUa9UKGg9OZ25N1Bip-0DX6DQ,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -19,7 +19,7 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
19
19
  autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
20
20
  autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=h9PBjZgsU-C0bLFN8vaNaKYamFITUGngXgnQGIwRSCo,32274
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=ZzWif3nj7tzZwzRCtPFhfuifCrRgftlsmwXIqrZgvbc,32476
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
61
61
  autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
62
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
63
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.4.1b20250816.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.4.1b20250816.dist-info/METADATA,sha256=7LlYeZooMsKaLOV5pHk1SgOOK6ejbQ3CHw0OW8-qbPg,12463
66
- autogluon.timeseries-1.4.1b20250816.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.4.1b20250816.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.4.1b20250816.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.4.1b20250816.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.4.1b20250816.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.4.1b20250816.dist-info/RECORD,,
64
+ autogluon.timeseries-1.4.1b20250819.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
+ autogluon.timeseries-1.4.1b20250819.dist-info/METADATA,sha256=GoN6KGAGn8VifOMRBPjH_cNcTBnelfsSS3-YCxQxz3Y,12463
66
+ autogluon.timeseries-1.4.1b20250819.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
+ autogluon.timeseries-1.4.1b20250819.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
+ autogluon.timeseries-1.4.1b20250819.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.4.1b20250819.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
+ autogluon.timeseries-1.4.1b20250819.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
+ autogluon.timeseries-1.4.1b20250819.dist-info/RECORD,,