autogluon.timeseries 1.4.0b20250724__py3-none-any.whl → 1.4.0b20250726__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/METADATA +6 -6
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/RECORD +11 -11
- /autogluon.timeseries-1.4.0b20250724-py3.9-nspkg.pth → /autogluon.timeseries-1.4.0b20250726-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.4.0b20250724.dist-info → autogluon.timeseries-1.4.0b20250726.dist-info}/zip-safe +0 -0
@@ -36,7 +36,7 @@ class TabularModel(BaseEstimator):
|
|
36
36
|
def __init__(self, model_class: Type[AbstractTabularModel], model_kwargs: Optional[dict] = None):
|
37
37
|
self.model_class = model_class
|
38
38
|
self.model_kwargs = {} if model_kwargs is None else model_kwargs
|
39
|
-
self.feature_pipeline = AutoMLPipelineFeatureGenerator()
|
39
|
+
self.feature_pipeline = AutoMLPipelineFeatureGenerator(verbosity=0)
|
40
40
|
|
41
41
|
def fit(self, X: pd.DataFrame, y: pd.Series, X_val: pd.DataFrame, y_val: pd.Series, **kwargs):
|
42
42
|
self.model = self.model_class(**self.model_kwargs)
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.4.
|
3
|
+
Version: 1.4.0b20250726
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.4.
|
59
|
-
Requires-Dist: autogluon.common==1.4.
|
60
|
-
Requires-Dist: autogluon.features==1.4.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.4.0b20250726
|
59
|
+
Requires-Dist: autogluon.common==1.4.0b20250726
|
60
|
+
Requires-Dist: autogluon.features==1.4.0b20250726
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.0b20250726
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: tests
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
@@ -108,7 +108,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
108
108
|
|
109
109
|
```python
|
110
110
|
from autogluon.tabular import TabularPredictor
|
111
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
111
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
112
112
|
predictions = predictor.predict("test.csv")
|
113
113
|
```
|
114
114
|
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.4.
|
1
|
+
autogluon.timeseries-1.4.0b20250726-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3W
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=X677_QRDbCPTZCRCcshLbt66zrfGkhbhIjj5DPT-OPc,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -23,7 +23,7 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=h9PBjZg
|
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=t_ZqEkhEFrhNvTf47_Gn_n8yVY4C5TRBqtpaOPkNp3k,37680
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=Cx42Gb4ScGA84mwXsd_y0Qkoh-edA-5PTr7apXpgvwY,23151
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
29
29
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
61
61
|
autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
|
62
62
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
63
63
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
64
|
-
autogluon.timeseries-1.4.
|
65
|
-
autogluon.timeseries-1.4.
|
66
|
-
autogluon.timeseries-1.4.
|
67
|
-
autogluon.timeseries-1.4.
|
68
|
-
autogluon.timeseries-1.4.
|
69
|
-
autogluon.timeseries-1.4.
|
70
|
-
autogluon.timeseries-1.4.
|
71
|
-
autogluon.timeseries-1.4.
|
64
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
65
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/METADATA,sha256=zCsIa-fdLQRrsobI0DPc_7tPglrmb5r4m3kgYBcjC30,12461
|
66
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
67
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
68
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
70
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
71
|
+
autogluon.timeseries-1.4.0b20250726.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|