autogluon.timeseries 1.3.2b20250723__py3-none-any.whl → 1.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +4 -30
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/METADATA +7 -7
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/RECORD +12 -12
- /autogluon.timeseries-1.3.2b20250723-py3.9-nspkg.pth → /autogluon.timeseries-1.4.0-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/zip-safe +0 -0
@@ -360,6 +360,10 @@ class TimeSeriesModelBase(ModelBase, ABC):
|
|
360
360
|
"""After calling this function, returned model should be able to be fit without `val_data`."""
|
361
361
|
params = copy.deepcopy(self.get_params())
|
362
362
|
|
363
|
+
# Remove 0.5 from quantile_levels so that the cloned model sets its must_drop_median correctly
|
364
|
+
if self.must_drop_median:
|
365
|
+
params["quantile_levels"].remove(0.5)
|
366
|
+
|
363
367
|
if "hyperparameters" not in params:
|
364
368
|
params["hyperparameters"] = dict()
|
365
369
|
|
@@ -631,36 +635,6 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
|
|
631
635
|
predictions = self.target_scaler.inverse_transform(predictions)
|
632
636
|
return predictions
|
633
637
|
|
634
|
-
def convert_to_refit_full_via_copy(self) -> Self:
|
635
|
-
# save the model as a new model on disk
|
636
|
-
previous_name = self.name
|
637
|
-
self.rename(self.name + REFIT_FULL_SUFFIX)
|
638
|
-
refit_model_path = self.path
|
639
|
-
self.save(path=self.path, verbose=False)
|
640
|
-
|
641
|
-
self.rename(previous_name)
|
642
|
-
|
643
|
-
refit_model = self.load(path=refit_model_path, verbose=False)
|
644
|
-
refit_model.val_score = None
|
645
|
-
refit_model.predict_time = None
|
646
|
-
|
647
|
-
return refit_model
|
648
|
-
|
649
|
-
def convert_to_refit_full_template(self):
|
650
|
-
"""After calling this function, returned model should be able to be fit without `val_data`."""
|
651
|
-
params = copy.deepcopy(self.get_params())
|
652
|
-
|
653
|
-
if "hyperparameters" not in params:
|
654
|
-
params["hyperparameters"] = dict()
|
655
|
-
|
656
|
-
if AG_ARGS_FIT not in params["hyperparameters"]:
|
657
|
-
params["hyperparameters"][AG_ARGS_FIT] = dict()
|
658
|
-
|
659
|
-
params["name"] = params["name"] + REFIT_FULL_SUFFIX
|
660
|
-
template = self.__class__(**params)
|
661
|
-
|
662
|
-
return template
|
663
|
-
|
664
638
|
def get_forecast_horizon_index(self, data: TimeSeriesDataFrame) -> pd.MultiIndex:
|
665
639
|
"""For each item in the dataframe, get timestamps for the next `prediction_length` time steps into the future."""
|
666
640
|
return pd.MultiIndex.from_frame(
|
@@ -36,7 +36,7 @@ class TabularModel(BaseEstimator):
|
|
36
36
|
def __init__(self, model_class: Type[AbstractTabularModel], model_kwargs: Optional[dict] = None):
|
37
37
|
self.model_class = model_class
|
38
38
|
self.model_kwargs = {} if model_kwargs is None else model_kwargs
|
39
|
-
self.feature_pipeline = AutoMLPipelineFeatureGenerator()
|
39
|
+
self.feature_pipeline = AutoMLPipelineFeatureGenerator(verbosity=0)
|
40
40
|
|
41
41
|
def fit(self, X: pd.DataFrame, y: pd.Series, X_val: pd.DataFrame, y_val: pd.Series, **kwargs):
|
42
42
|
self.model = self.model_class(**self.model_kwargs)
|
autogluon/timeseries/version.py
CHANGED
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.
|
3
|
+
Version: 1.4.0
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -10,7 +10,7 @@ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
12
12
|
Platform: UNKNOWN
|
13
|
-
Classifier: Development Status ::
|
13
|
+
Classifier: Development Status :: 5 - Production/Stable
|
14
14
|
Classifier: Intended Audience :: Education
|
15
15
|
Classifier: Intended Audience :: Developers
|
16
16
|
Classifier: Intended Audience :: Science/Research
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.
|
59
|
-
Requires-Dist: autogluon.common==1.
|
60
|
-
Requires-Dist: autogluon.features==1.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.4.0
|
59
|
+
Requires-Dist: autogluon.common==1.4.0
|
60
|
+
Requires-Dist: autogluon.features==1.4.0
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.0
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: tests
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
@@ -108,7 +108,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
108
108
|
|
109
109
|
```python
|
110
110
|
from autogluon.tabular import TabularPredictor
|
111
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
111
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
112
112
|
predictions = predictor.predict("test.csv")
|
113
113
|
```
|
114
114
|
|
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.
|
1
|
+
autogluon.timeseries-1.4.0-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3W
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=16If3bcb1Cg5l2nF4vRSHA6o8Nbw7690ibUJPQOlh9g,82
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -19,11 +19,11 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
|
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
|
20
20
|
autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
|
21
21
|
autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
|
22
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
22
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=h9PBjZgsU-C0bLFN8vaNaKYamFITUGngXgnQGIwRSCo,32274
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=t_ZqEkhEFrhNvTf47_Gn_n8yVY4C5TRBqtpaOPkNp3k,37680
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=Cx42Gb4ScGA84mwXsd_y0Qkoh-edA-5PTr7apXpgvwY,23151
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
29
29
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
61
61
|
autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
|
62
62
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
63
63
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
64
|
-
autogluon.timeseries-1.
|
65
|
-
autogluon.timeseries-1.
|
66
|
-
autogluon.timeseries-1.
|
67
|
-
autogluon.timeseries-1.
|
68
|
-
autogluon.timeseries-1.
|
69
|
-
autogluon.timeseries-1.
|
70
|
-
autogluon.timeseries-1.
|
71
|
-
autogluon.timeseries-1.
|
64
|
+
autogluon.timeseries-1.4.0.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
65
|
+
autogluon.timeseries-1.4.0.dist-info/METADATA,sha256=xuPEDTN1xK47Slqrmp8Hev1xdkTZbPEB-k5iL7lHdWA,12429
|
66
|
+
autogluon.timeseries-1.4.0.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
67
|
+
autogluon.timeseries-1.4.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
68
|
+
autogluon.timeseries-1.4.0.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.4.0.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
70
|
+
autogluon.timeseries-1.4.0.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
71
|
+
autogluon.timeseries-1.4.0.dist-info/RECORD,,
|
/autogluon.timeseries-1.3.2b20250723-py3.9-nspkg.pth → /autogluon.timeseries-1.4.0-py3.9-nspkg.pth
RENAMED
File without changes
|
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/top_level.txt
RENAMED
File without changes
|
{autogluon.timeseries-1.3.2b20250723.dist-info → autogluon.timeseries-1.4.0.dist-info}/zip-safe
RENAMED
File without changes
|