autogluon.timeseries 1.3.2b20250722__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -360,6 +360,10 @@ class TimeSeriesModelBase(ModelBase, ABC):
360
360
  """After calling this function, returned model should be able to be fit without `val_data`."""
361
361
  params = copy.deepcopy(self.get_params())
362
362
 
363
+ # Remove 0.5 from quantile_levels so that the cloned model sets its must_drop_median correctly
364
+ if self.must_drop_median:
365
+ params["quantile_levels"].remove(0.5)
366
+
363
367
  if "hyperparameters" not in params:
364
368
  params["hyperparameters"] = dict()
365
369
 
@@ -631,36 +635,6 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
631
635
  predictions = self.target_scaler.inverse_transform(predictions)
632
636
  return predictions
633
637
 
634
- def convert_to_refit_full_via_copy(self) -> Self:
635
- # save the model as a new model on disk
636
- previous_name = self.name
637
- self.rename(self.name + REFIT_FULL_SUFFIX)
638
- refit_model_path = self.path
639
- self.save(path=self.path, verbose=False)
640
-
641
- self.rename(previous_name)
642
-
643
- refit_model = self.load(path=refit_model_path, verbose=False)
644
- refit_model.val_score = None
645
- refit_model.predict_time = None
646
-
647
- return refit_model
648
-
649
- def convert_to_refit_full_template(self):
650
- """After calling this function, returned model should be able to be fit without `val_data`."""
651
- params = copy.deepcopy(self.get_params())
652
-
653
- if "hyperparameters" not in params:
654
- params["hyperparameters"] = dict()
655
-
656
- if AG_ARGS_FIT not in params["hyperparameters"]:
657
- params["hyperparameters"][AG_ARGS_FIT] = dict()
658
-
659
- params["name"] = params["name"] + REFIT_FULL_SUFFIX
660
- template = self.__class__(**params)
661
-
662
- return template
663
-
664
638
  def get_forecast_horizon_index(self, data: TimeSeriesDataFrame) -> pd.MultiIndex:
665
639
  """For each item in the dataframe, get timestamps for the next `prediction_length` time steps into the future."""
666
640
  return pd.MultiIndex.from_frame(
@@ -36,7 +36,7 @@ class TabularModel(BaseEstimator):
36
36
  def __init__(self, model_class: Type[AbstractTabularModel], model_kwargs: Optional[dict] = None):
37
37
  self.model_class = model_class
38
38
  self.model_kwargs = {} if model_kwargs is None else model_kwargs
39
- self.feature_pipeline = AutoMLPipelineFeatureGenerator()
39
+ self.feature_pipeline = AutoMLPipelineFeatureGenerator(verbosity=0)
40
40
 
41
41
  def fit(self, X: pd.DataFrame, y: pd.Series, X_val: pd.DataFrame, y_val: pd.Series, **kwargs):
42
42
  self.model = self.model_class(**self.model_kwargs)
@@ -20,7 +20,7 @@ from autogluon.timeseries import TimeSeriesDataFrame
20
20
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP
21
21
  from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
22
22
  from autogluon.timeseries.utils.datetime import get_lags_for_frequency, get_time_features_for_frequency
23
- from autogluon.timeseries.utils.warning_filters import set_loggers_level
23
+ from autogluon.timeseries.utils.warning_filters import set_loggers_level, warning_filter
24
24
 
25
25
  from .utils import MLF_ITEMID, MLF_TARGET, MLF_TIMESTAMP
26
26
 
@@ -150,7 +150,8 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
150
150
 
151
151
  mlf = MLForecast(models=[], freq=cls._dummy_freq, lags=lags, date_features=date_features)
152
152
 
153
- features_df = mlf.preprocess(train_df, static_features=[], dropna=False)
153
+ with warning_filter():
154
+ features_df = mlf.preprocess(train_df, static_features=[], dropna=False)
154
155
  del train_df
155
156
  del mlf
156
157
  # Sort chronologically for efficient train/test split
@@ -422,7 +423,8 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
422
423
 
423
424
  mlf = MLForecast(models=[], freq=cls._dummy_freq, lags=lags, date_features=date_features)
424
425
 
425
- features_df = mlf.preprocess(full_df, static_features=[], dropna=False)
426
+ with warning_filter():
427
+ features_df = mlf.preprocess(full_df, static_features=[], dropna=False)
426
428
  del mlf
427
429
 
428
430
  end_idx_per_item = np.cumsum(features_df[MLF_ITEMID].value_counts(sort=False).to_numpy(dtype="int32"))
@@ -8,12 +8,14 @@ import sys
8
8
  import warnings
9
9
  from collections import Counter
10
10
 
11
+ import pandas as pd
12
+
11
13
  __all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
12
14
 
13
15
 
14
16
  @contextlib.contextmanager
15
17
  def warning_filter(all_warnings: bool = False):
16
- categories = [RuntimeWarning, UserWarning, FutureWarning]
18
+ categories = [RuntimeWarning, UserWarning, FutureWarning, pd.errors.PerformanceWarning]
17
19
  if all_warnings:
18
20
  categories.append(Warning)
19
21
  with warnings.catch_warnings():
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250722"
3
+ __version__ = "1.4.0"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250722
3
+ Version: 1.4.0
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -10,7 +10,7 @@ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
12
  Platform: UNKNOWN
13
- Classifier: Development Status :: 4 - Beta
13
+ Classifier: Development Status :: 5 - Production/Stable
14
14
  Classifier: Intended Audience :: Education
15
15
  Classifier: Intended Audience :: Developers
16
16
  Classifier: Intended Audience :: Science/Research
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250722
59
- Requires-Dist: autogluon.common==1.3.2b20250722
60
- Requires-Dist: autogluon.features==1.3.2b20250722
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250722
58
+ Requires-Dist: autogluon.core[raytune]==1.4.0
59
+ Requires-Dist: autogluon.common==1.4.0
60
+ Requires-Dist: autogluon.features==1.4.0
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.4.0
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -108,7 +108,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
108
108
 
109
109
  ```python
110
110
  from autogluon.tabular import TabularPredictor
111
- predictor = TabularPredictor(label="class").fit("train.csv")
111
+ predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
112
112
  predictions = predictor.predict("test.csv")
113
113
  ```
114
114
 
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.3.2b20250722-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.4.0-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3W
6
6
  autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=CdIaQfJPPjnE9mEFR_3W2YJdiCuNqvKW-cgu00I6i3w,91
9
+ autogluon/timeseries/version.py,sha256=16If3bcb1Cg5l2nF4vRSHA6o8Nbw7690ibUJPQOlh9g,82
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -19,12 +19,12 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
19
19
  autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
20
20
  autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYeLT9KsUAHlWlCH9WVw7I_L65m8CMKZBMN7LIU,33112
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=h9PBjZgsU-C0bLFN8vaNaKYamFITUGngXgnQGIwRSCo,32274
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=l10XXajPzUdPGpqC2fSL1jxaXRzQ6b6IBmLLPq59qQY,37669
27
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=9jOpk1y709od1XvOqLDxz8kVSeCclnlsGwqaZYsxfn0,23065
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=t_ZqEkhEFrhNvTf47_Gn_n8yVY4C5TRBqtpaOPkNp3k,37680
27
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=Cx42Gb4ScGA84mwXsd_y0Qkoh-edA-5PTr7apXpgvwY,23151
28
28
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
29
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
30
30
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
@@ -55,17 +55,17 @@ autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHv
55
55
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
56
  autogluon/timeseries/utils/features.py,sha256=OeMvwVX4D2kwoFjuj0RZYZ7MgcbaeBjV97Ud1aUdvNc,22657
57
57
  autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
58
- autogluon/timeseries/utils/warning_filters.py,sha256=tHvhj9y7c3MP6JrjAedc7UiFFw0_mKYziDQupw8NhiQ,2538
58
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
59
59
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
60
60
  autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
61
61
  autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
62
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
63
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.3.2b20250722.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.3.2b20250722.dist-info/METADATA,sha256=Lqo0VWBsBAiA2adRuu9jv_7aftZ-emBdmEwGsRFG9Yo,12445
66
- autogluon.timeseries-1.3.2b20250722.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.3.2b20250722.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.3.2b20250722.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250722.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.3.2b20250722.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.3.2b20250722.dist-info/RECORD,,
64
+ autogluon.timeseries-1.4.0.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
+ autogluon.timeseries-1.4.0.dist-info/METADATA,sha256=xuPEDTN1xK47Slqrmp8Hev1xdkTZbPEB-k5iL7lHdWA,12429
66
+ autogluon.timeseries-1.4.0.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
+ autogluon.timeseries-1.4.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
+ autogluon.timeseries-1.4.0.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.4.0.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
+ autogluon.timeseries-1.4.0.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
+ autogluon.timeseries-1.4.0.dist-info/RECORD,,