autogluon.timeseries 1.3.2b20250722__py3-none-any.whl → 1.3.2b20250723__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -20,7 +20,7 @@ from autogluon.timeseries import TimeSeriesDataFrame
20
20
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP
21
21
  from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
22
22
  from autogluon.timeseries.utils.datetime import get_lags_for_frequency, get_time_features_for_frequency
23
- from autogluon.timeseries.utils.warning_filters import set_loggers_level
23
+ from autogluon.timeseries.utils.warning_filters import set_loggers_level, warning_filter
24
24
 
25
25
  from .utils import MLF_ITEMID, MLF_TARGET, MLF_TIMESTAMP
26
26
 
@@ -150,7 +150,8 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
150
150
 
151
151
  mlf = MLForecast(models=[], freq=cls._dummy_freq, lags=lags, date_features=date_features)
152
152
 
153
- features_df = mlf.preprocess(train_df, static_features=[], dropna=False)
153
+ with warning_filter():
154
+ features_df = mlf.preprocess(train_df, static_features=[], dropna=False)
154
155
  del train_df
155
156
  del mlf
156
157
  # Sort chronologically for efficient train/test split
@@ -422,7 +423,8 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
422
423
 
423
424
  mlf = MLForecast(models=[], freq=cls._dummy_freq, lags=lags, date_features=date_features)
424
425
 
425
- features_df = mlf.preprocess(full_df, static_features=[], dropna=False)
426
+ with warning_filter():
427
+ features_df = mlf.preprocess(full_df, static_features=[], dropna=False)
426
428
  del mlf
427
429
 
428
430
  end_idx_per_item = np.cumsum(features_df[MLF_ITEMID].value_counts(sort=False).to_numpy(dtype="int32"))
@@ -8,12 +8,14 @@ import sys
8
8
  import warnings
9
9
  from collections import Counter
10
10
 
11
+ import pandas as pd
12
+
11
13
  __all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
12
14
 
13
15
 
14
16
  @contextlib.contextmanager
15
17
  def warning_filter(all_warnings: bool = False):
16
- categories = [RuntimeWarning, UserWarning, FutureWarning]
18
+ categories = [RuntimeWarning, UserWarning, FutureWarning, pd.errors.PerformanceWarning]
17
19
  if all_warnings:
18
20
  categories.append(Warning)
19
21
  with warnings.catch_warnings():
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250722"
3
+ __version__ = "1.3.2b20250723"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250722
3
+ Version: 1.3.2b20250723
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250722
59
- Requires-Dist: autogluon.common==1.3.2b20250722
60
- Requires-Dist: autogluon.features==1.3.2b20250722
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250722
58
+ Requires-Dist: autogluon.core[raytune]==1.3.2b20250723
59
+ Requires-Dist: autogluon.common==1.3.2b20250723
60
+ Requires-Dist: autogluon.features==1.3.2b20250723
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250723
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.3.2b20250722-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.2b20250723-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3W
6
6
  autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=CdIaQfJPPjnE9mEFR_3W2YJdiCuNqvKW-cgu00I6i3w,91
9
+ autogluon/timeseries/version.py,sha256=cWdZXGTK9OOrSXp72ZyqoDUyrWAq0AaDJEEI5uLNbJM,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -24,7 +24,7 @@ autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0USh
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
26
  autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=l10XXajPzUdPGpqC2fSL1jxaXRzQ6b6IBmLLPq59qQY,37669
27
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=9jOpk1y709od1XvOqLDxz8kVSeCclnlsGwqaZYsxfn0,23065
27
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=Cx42Gb4ScGA84mwXsd_y0Qkoh-edA-5PTr7apXpgvwY,23151
28
28
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
29
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
30
30
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
@@ -55,17 +55,17 @@ autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHv
55
55
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
56
56
  autogluon/timeseries/utils/features.py,sha256=OeMvwVX4D2kwoFjuj0RZYZ7MgcbaeBjV97Ud1aUdvNc,22657
57
57
  autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
58
- autogluon/timeseries/utils/warning_filters.py,sha256=tHvhj9y7c3MP6JrjAedc7UiFFw0_mKYziDQupw8NhiQ,2538
58
+ autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
59
59
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
60
60
  autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
61
61
  autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
62
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
63
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.3.2b20250722.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.3.2b20250722.dist-info/METADATA,sha256=Lqo0VWBsBAiA2adRuu9jv_7aftZ-emBdmEwGsRFG9Yo,12445
66
- autogluon.timeseries-1.3.2b20250722.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.3.2b20250722.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.3.2b20250722.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250722.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.3.2b20250722.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.3.2b20250722.dist-info/RECORD,,
64
+ autogluon.timeseries-1.3.2b20250723.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
+ autogluon.timeseries-1.3.2b20250723.dist-info/METADATA,sha256=tp-Ohj5nvw6lDvOGgh2d8bi87yJV1K6nJy0A0bhNfh0,12445
66
+ autogluon.timeseries-1.3.2b20250723.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
+ autogluon.timeseries-1.3.2b20250723.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
+ autogluon.timeseries-1.3.2b20250723.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.2b20250723.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
+ autogluon.timeseries-1.3.2b20250723.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
+ autogluon.timeseries-1.3.2b20250723.dist-info/RECORD,,