autogluon.timeseries 1.3.2b20250722__py3-none-any.whl → 1.3.2b20250723__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/autogluon_tabular/per_step.py +5 -3
- autogluon/timeseries/utils/warning_filters.py +3 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/RECORD +12 -12
- /autogluon.timeseries-1.3.2b20250722-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250723-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250722.dist-info → autogluon.timeseries-1.3.2b20250723.dist-info}/zip-safe +0 -0
@@ -20,7 +20,7 @@ from autogluon.timeseries import TimeSeriesDataFrame
|
|
20
20
|
from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP
|
21
21
|
from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
|
22
22
|
from autogluon.timeseries.utils.datetime import get_lags_for_frequency, get_time_features_for_frequency
|
23
|
-
from autogluon.timeseries.utils.warning_filters import set_loggers_level
|
23
|
+
from autogluon.timeseries.utils.warning_filters import set_loggers_level, warning_filter
|
24
24
|
|
25
25
|
from .utils import MLF_ITEMID, MLF_TARGET, MLF_TIMESTAMP
|
26
26
|
|
@@ -150,7 +150,8 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
|
|
150
150
|
|
151
151
|
mlf = MLForecast(models=[], freq=cls._dummy_freq, lags=lags, date_features=date_features)
|
152
152
|
|
153
|
-
|
153
|
+
with warning_filter():
|
154
|
+
features_df = mlf.preprocess(train_df, static_features=[], dropna=False)
|
154
155
|
del train_df
|
155
156
|
del mlf
|
156
157
|
# Sort chronologically for efficient train/test split
|
@@ -422,7 +423,8 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
|
|
422
423
|
|
423
424
|
mlf = MLForecast(models=[], freq=cls._dummy_freq, lags=lags, date_features=date_features)
|
424
425
|
|
425
|
-
|
426
|
+
with warning_filter():
|
427
|
+
features_df = mlf.preprocess(full_df, static_features=[], dropna=False)
|
426
428
|
del mlf
|
427
429
|
|
428
430
|
end_idx_per_item = np.cumsum(features_df[MLF_ITEMID].value_counts(sort=False).to_numpy(dtype="int32"))
|
@@ -8,12 +8,14 @@ import sys
|
|
8
8
|
import warnings
|
9
9
|
from collections import Counter
|
10
10
|
|
11
|
+
import pandas as pd
|
12
|
+
|
11
13
|
__all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
|
12
14
|
|
13
15
|
|
14
16
|
@contextlib.contextmanager
|
15
17
|
def warning_filter(all_warnings: bool = False):
|
16
|
-
categories = [RuntimeWarning, UserWarning, FutureWarning]
|
18
|
+
categories = [RuntimeWarning, UserWarning, FutureWarning, pd.errors.PerformanceWarning]
|
17
19
|
if all_warnings:
|
18
20
|
categories.append(Warning)
|
19
21
|
with warnings.catch_warnings():
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250723
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.2b20250723
|
59
|
+
Requires-Dist: autogluon.common==1.3.2b20250723
|
60
|
+
Requires-Dist: autogluon.features==1.3.2b20250723
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250723
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: tests
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.2b20250723-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3W
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=cWdZXGTK9OOrSXp72ZyqoDUyrWAq0AaDJEEI5uLNbJM,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -24,7 +24,7 @@ autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0USh
|
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
26
26
|
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=l10XXajPzUdPGpqC2fSL1jxaXRzQ6b6IBmLLPq59qQY,37669
|
27
|
-
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=
|
27
|
+
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=Cx42Gb4ScGA84mwXsd_y0Qkoh-edA-5PTr7apXpgvwY,23151
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
29
29
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
30
30
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
@@ -55,17 +55,17 @@ autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHv
|
|
55
55
|
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
56
56
|
autogluon/timeseries/utils/features.py,sha256=OeMvwVX4D2kwoFjuj0RZYZ7MgcbaeBjV97Ud1aUdvNc,22657
|
57
57
|
autogluon/timeseries/utils/forecast.py,sha256=yK1_eNtRUPYGs0R-VWMO4c81LrTGF57ih3yzsXVHyGY,2191
|
58
|
-
autogluon/timeseries/utils/warning_filters.py,sha256=
|
58
|
+
autogluon/timeseries/utils/warning_filters.py,sha256=SroNhLU3kwbD8anM58vdxWq36Z8j_uiY42mEt0ya-JI,2589
|
59
59
|
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
60
60
|
autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
|
61
61
|
autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
|
62
62
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
63
63
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
71
|
-
autogluon.timeseries-1.3.
|
64
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
65
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/METADATA,sha256=tp-Ohj5nvw6lDvOGgh2d8bi87yJV1K6nJy0A0bhNfh0,12445
|
66
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
67
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
68
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
70
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
71
|
+
autogluon.timeseries-1.3.2b20250723.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|