autogluon.timeseries 1.3.2b20250716__py3-none-any.whl → 1.3.2b20250718__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (20) hide show
  1. autogluon/timeseries/dataset/ts_dataframe.py +11 -11
  2. autogluon/timeseries/metrics/abstract.py +6 -5
  3. autogluon/timeseries/metrics/point.py +1 -1
  4. autogluon/timeseries/metrics/quantile.py +1 -1
  5. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +6 -6
  6. autogluon/timeseries/models/autogluon_tabular/per_step.py +10 -7
  7. autogluon/timeseries/models/gluonts/models.py +5 -5
  8. autogluon/timeseries/models/local/statsforecast.py +3 -3
  9. autogluon/timeseries/predictor.py +44 -44
  10. autogluon/timeseries/regressor.py +9 -7
  11. autogluon/timeseries/version.py +1 -1
  12. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/METADATA +5 -5
  13. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/RECORD +20 -20
  14. /autogluon.timeseries-1.3.2b20250716-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250718-py3.9-nspkg.pth +0 -0
  15. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/LICENSE +0 -0
  16. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/NOTICE +0 -0
  17. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/WHEEL +0 -0
  18. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/namespace_packages.txt +0 -0
  19. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/top_level.txt +0 -0
  20. {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/zip-safe +0 -0
@@ -456,7 +456,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
456
456
  Number of items (individual time series) randomly selected to infer the frequency. Lower values speed up
457
457
  the method, but increase the chance that some items with invalid frequency are missed by subsampling.
458
458
 
459
- If set to `None`, all items will be used for inferring the frequency.
459
+ If set to ``None``, all items will be used for inferring the frequency.
460
460
  raise_if_irregular : bool, default = False
461
461
  If True, an exception will be raised if some items have an irregular frequency, or if different items have
462
462
  different frequencies.
@@ -467,7 +467,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
467
467
  If all time series have a regular frequency, returns a pandas-compatible `frequency alias <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
468
468
 
469
469
  If some items have an irregular frequency or if different items have different frequencies, returns string
470
- `IRREG`.
470
+ ``IRREG``.
471
471
  """
472
472
  ts_df = self
473
473
  if num_items is not None and ts_df.num_items > num_items:
@@ -536,7 +536,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
536
536
  def num_timesteps_per_item(self) -> pd.Series:
537
537
  """Number of observations in each time series in the dataframe.
538
538
 
539
- Returns a `pandas.Series` with item_id as index and number of observations per item as values.
539
+ Returns a ``pandas.Series`` with ``item_id`` as index and number of observations per item as values.
540
540
  """
541
541
  counts = pd.Series(self.index.codes[0]).value_counts(sort=False)
542
542
  counts.index = self.index.levels[0][counts.index]
@@ -603,7 +603,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
603
603
  This operation is equivalent to selecting a slice ``[start_index : end_index]`` from each time series, and then
604
604
  combining these slices into a new ``TimeSeriesDataFrame``. See examples below.
605
605
 
606
- It is recommended to sort the index with `ts_df.sort_index()` before calling this method to take advantage of
606
+ It is recommended to sort the index with ``ts_df.sort_index()`` before calling this method to take advantage of
607
607
  a fast optimized algorithm.
608
608
 
609
609
  Parameters
@@ -798,11 +798,11 @@ class TimeSeriesDataFrame(pd.DataFrame):
798
798
  method : str, default = "auto"
799
799
  Method used to impute missing values.
800
800
 
801
- - "auto" - first forward fill (to fill the in-between and trailing NaNs), then backward fill (to fill the leading NaNs)
802
- - "ffill" or "pad" - propagate last valid observation forward. Note: missing values at the start of the time series are not filled.
803
- - "bfill" or "backfill" - use next valid observation to fill gap. Note: this may result in information leakage; missing values at the end of the time series are not filled.
804
- - "constant" - replace NaNs with the given constant ``value``.
805
- - "interpolate" - fill NaN values using linear interpolation. Note: this may result in information leakage.
801
+ - ``"auto"`` - first forward fill (to fill the in-between and trailing NaNs), then backward fill (to fill the leading NaNs)
802
+ - ``"ffill"`` or ``"pad"`` - propagate last valid observation forward. Note: missing values at the start of the time series are not filled.
803
+ - ``"bfill"`` or ``"backfill"`` - use next valid observation to fill gap. Note: this may result in information leakage; missing values at the end of the time series are not filled.
804
+ - ``"constant"`` - replace NaNs with the given constant ``value``.
805
+ - ``"interpolate"`` - fill NaN values using linear interpolation. Note: this may result in information leakage.
806
806
  value : float, default = 0.0
807
807
  Value used by the "constant" imputation method.
808
808
 
@@ -910,7 +910,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
910
910
  The forecast horizon, i.e., How many time steps into the future must be predicted.
911
911
  known_covariates_names : List[str], optional
912
912
  Names of the dataframe columns that contain covariates known in the future.
913
- See :attr:`known_covariates_names` of :class:`~autogluon.timeseries.TimeSeriesPredictor` for more details.
913
+ See ``known_covariates_names`` of :class:`~autogluon.timeseries.TimeSeriesPredictor` for more details.
914
914
 
915
915
  Returns
916
916
  -------
@@ -1103,7 +1103,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
1103
1103
  return resampled_df
1104
1104
 
1105
1105
  def to_data_frame(self) -> pd.DataFrame:
1106
- """Convert `TimeSeriesDataFrame` to a `pandas.DataFrame`"""
1106
+ """Convert ``TimeSeriesDataFrame`` to a ``pandas.DataFrame``"""
1107
1107
  return pd.DataFrame(self)
1108
1108
 
1109
1109
  def get_indptr(self) -> np.ndarray:
@@ -20,14 +20,14 @@ class TimeSeriesScorer:
20
20
  Parameters
21
21
  ----------
22
22
  prediction_length : int, default = 1
23
- The length of the forecast horizon. The predictions provided to the `TimeSeriesScorer` are expected to contain
23
+ The length of the forecast horizon. The predictions provided to the ``TimeSeriesScorer`` are expected to contain
24
24
  a forecast for this many time steps for each time series.
25
25
  seasonal_period : int or None, default = None
26
26
  Seasonal period used to compute some evaluation metrics such as mean absolute scaled error (MASE). Defaults to
27
- `None`, in which case the seasonal period is computed based on the data frequency.
27
+ ``None``, in which case the seasonal period is computed based on the data frequency.
28
28
  horizon_weight : Sequence[float], np.ndarray or None, default = None
29
29
  Weight assigned to each time step in the forecast horizon when computing the metric. If provided, the
30
- `horizon_weight` will be stored as a numpy array of shape `[1, prediction_length]`.
30
+ ``horizon_weight`` will be stored as a numpy array of shape ``[1, prediction_length]``.
31
31
 
32
32
  Attributes
33
33
  ----------
@@ -44,8 +44,9 @@ class TimeSeriesScorer:
44
44
  Whether the given metric uses the quantile predictions. Some models will modify the training procedure if they
45
45
  are trained to optimize a quantile metric.
46
46
  equivalent_tabular_regression_metric : str
47
- Name of an equivalent metric used by AutoGluon-Tabular with ``problem_type="regression"``. Used by models that
48
- train a TabularPredictor under the hood. This attribute should only be specified by point forecast metrics.
47
+ Name of an equivalent metric used by AutoGluon-Tabular with ``problem_type="regression"``. Used by forecasting
48
+ models that train tabular regression models under the hood. This attribute should only be specified by point
49
+ forecast metrics.
49
50
  """
50
51
 
51
52
  greater_is_better_internal: bool = False
@@ -143,7 +143,7 @@ class WAPE(TimeSeriesScorer):
143
143
  - not sensitive to outliers
144
144
  - prefers models that accurately estimate the median
145
145
 
146
- If `self.horizon_weight` is provided, both the errors and the target time series in the denominator will be re-weighted.
146
+ If ``self.horizon_weight`` is provided, both the errors and the target time series in the denominator will be re-weighted.
147
147
 
148
148
  References
149
149
  ----------
@@ -25,7 +25,7 @@ class WQL(TimeSeriesScorer):
25
25
  - scale-dependent (time series with large absolute value contribute more to the loss)
26
26
  - equivalent to WAPE if ``quantile_levels = [0.5]``
27
27
 
28
- If `horizon_weight` is provided, both the errors and the target time series in the denominator will be re-weighted.
28
+ If ``horizon_weight`` is provided, both the errors and the target time series in the denominator will be re-weighted.
29
29
 
30
30
  References
31
31
  ----------
@@ -505,7 +505,7 @@ class DirectTabularModel(AbstractMLForecastModel):
505
505
  target_scaler : {"standard", "mean_abs", "min_max", "robust", None}, default = "mean_abs"
506
506
  Scaling applied to each time series. Scaling is applied after differencing.
507
507
  model_name : str, default = "GBM"
508
- Name of the tabular regression model. See `autogluon.tabular.registry.ag_model_registry` or
508
+ Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
509
509
  `the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
510
510
  tabular models.
511
511
  model_hyperparameters : Dict[str, Any], optional
@@ -513,8 +513,8 @@ class DirectTabularModel(AbstractMLForecastModel):
513
513
  max_num_items : int or None, default = 20_000
514
514
  If not None, the model will randomly select this many time series for training and validation.
515
515
  max_num_samples : int or None, default = 1_000_000
516
- If not None, training dataset passed to TabularPredictor will contain at most this many rows (starting from the
517
- end of each time series).
516
+ If not None, training dataset passed to the tabular regression model will contain at most this many rows
517
+ (starting from the end of each time series).
518
518
  """
519
519
 
520
520
  @property
@@ -686,7 +686,7 @@ class RecursiveTabularModel(AbstractMLForecastModel):
686
686
  Dictionary mapping lag periods to transformation functions applied to lagged target values (e.g., rolling mean).
687
687
  See `MLForecast documentation <https://nixtlaverse.nixtla.io/mlforecast/lag_transforms.html>`_ for more details.
688
688
  model_name : str, default = "GBM"
689
- Name of the tabular regression model. See `autogluon.tabular.registry.ag_model_registry` or
689
+ Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
690
690
  `the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
691
691
  tabular models.
692
692
  model_hyperparameters : Dict[str, Any], optional
@@ -694,8 +694,8 @@ class RecursiveTabularModel(AbstractMLForecastModel):
694
694
  max_num_items : int or None, default = 20_000
695
695
  If not None, the model will randomly select this many time series for training and validation.
696
696
  max_num_samples : int or None, default = 1_000_000
697
- If not None, training dataset passed to TabularPredictor will contain at most this many rows (starting from the
698
- end of each time series).
697
+ If not None, training dataset passed to the tabular regression model will contain at most this many rows
698
+ (starting from the end of each time series).
699
699
  """
700
700
 
701
701
  def get_hyperparameters(self) -> Dict[str, Any]:
@@ -44,18 +44,18 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
44
44
  obtained by assuming that the residuals follow zero-mean normal distribution.
45
45
 
46
46
  This model uses `mlforecast <https://github.com/Nixtla/mlforecast>`_ under the hood for efficient preprocessing,
47
- but the implementation of the per-step forecasting strategy is different from the `max_horizon` in `mlforecast`.
47
+ but the implementation of the per-step forecasting strategy is different from the ``max_horizon`` in ``mlforecast``.
48
48
 
49
49
 
50
50
  Other Parameters
51
51
  ----------------
52
52
  trailing_lags : List[int], default = None
53
53
  Trailing window lags of the target that will be used as features for predictions.
54
- Trailing lags are shifted per forecast step: model for step `h` uses `[lag+h for lag in trailing_lags]`.
55
- If None, defaults to [1, 2, ..., 12].
54
+ Trailing lags are shifted per forecast step: model for step ``h`` uses ``[lag+h for lag in trailing_lags]``.
55
+ If None, defaults to ``[1, 2, ..., 12]``.
56
56
  seasonal_lags: List[int], default = None
57
57
  Seasonal lags of the target used as features. Unlike trailing lags, seasonal lags are not shifted
58
- but filtered by availability: model for step `h` uses `[lag for lag in seasonal_lags if lag > h]`.
58
+ but filtered by availability: model for step ``h`` uses ``[lag for lag in seasonal_lags if lag > h]``.
59
59
  If None, determined automatically based on data frequency.
60
60
  date_features : List[Union[str, Callable]], default = None
61
61
  Features computed from the dates. Can be pandas date attributes or functions that will take the dates as input.
@@ -63,16 +63,19 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
63
63
  target_scaler : {"standard", "mean_abs", "min_max", "robust", None}, default = "mean_abs"
64
64
  Scaling applied to each time series.
65
65
  model_name : str, default = "CAT"
66
- Name of the tabular regression model. See `autogluon.tabular.registry.ag_model_registry` or
66
+ Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
67
67
  `the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
68
68
  tabular models.
69
69
  model_hyperparameters : Dict[str, Any], optional
70
70
  Hyperparameters passed to the tabular regression model.
71
+ validation_fraction : float or None, default = 0.1
72
+ Fraction of the training data to use for validation. If None or 0.0, no validation set is created.
73
+ Validation set contains the most recent observations (chronologically). Must be between 0.0 and 1.0.
71
74
  max_num_items : int or None, default = 20_000
72
75
  If not None, the model will randomly select this many time series for training and validation.
73
76
  max_num_samples : int or None, default = 1_000_000
74
- If not None, training dataset passed to TabularPredictor will contain at most this many rows (starting from the
75
- end of each time series).
77
+ If not None, training dataset passed to the tabular regression model will contain at most this many rows
78
+ (starting from the end of each time series).
76
79
  n_jobs : int or None, default = None
77
80
  Number of parallel jobs for fitting models across forecast horizons.
78
81
  If None, automatically determined based on available memory to prevent OOM errors.
@@ -60,7 +60,7 @@ class DeepARModel(AbstractGluonTSModel):
60
60
  Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
61
61
  scaling: bool, default = True
62
62
  If True, mean absolute scaling will be applied to each *context window* during training & prediction.
63
- Note that this is different from the `target_scaler` that is applied to the *entire time series*.
63
+ Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
64
64
  max_epochs : int, default = 100
65
65
  Number of epochs the model will be trained for
66
66
  batch_size : int, default = 64
@@ -119,7 +119,7 @@ class SimpleFeedForwardModel(AbstractGluonTSModel):
119
119
  Whether to use batch normalization
120
120
  mean_scaling : bool, default = True
121
121
  If True, mean absolute scaling will be applied to each *context window* during training & prediction.
122
- Note that this is different from the `target_scaler` that is applied to the *entire time series*.
122
+ Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
123
123
  max_epochs : int, default = 100
124
124
  Number of epochs the model will be trained for
125
125
  batch_size : int, default = 64
@@ -261,7 +261,7 @@ class DLinearModel(AbstractGluonTSModel):
261
261
  Scaling applied to each *context window* during training & prediction.
262
262
  One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
263
263
 
264
- Note that this is different from the `target_scaler` that is applied to the *entire time series*.
264
+ Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
265
265
  max_epochs : int, default = 100
266
266
  Number of epochs the model will be trained for
267
267
  batch_size : int, default = 64
@@ -325,7 +325,7 @@ class PatchTSTModel(AbstractGluonTSModel):
325
325
  Scaling applied to each *context window* during training & prediction.
326
326
  One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
327
327
 
328
- Note that this is different from the `target_scaler` that is applied to the *entire time series*.
328
+ Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
329
329
  max_epochs : int, default = 100
330
330
  Number of epochs the model will be trained for
331
331
  batch_size : int, default = 64
@@ -489,7 +489,7 @@ class TiDEModel(AbstractGluonTSModel):
489
489
  Scaling applied to each *context window* during training & prediction.
490
490
  One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
491
491
 
492
- Note that this is different from the `target_scaler` that is applied to the *entire time series*.
492
+ Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
493
493
  max_epochs : int, default = 100
494
494
  Number of epochs the model will be trained for
495
495
  batch_size : int, default = 256
@@ -622,9 +622,9 @@ class CrostonModel(AbstractStatsForecastIntermittentDemandModel):
622
622
  variant : {"SBA", "classic", "optimized"}, default = "SBA"
623
623
  Variant of the Croston model that is used. Available options:
624
624
 
625
- - `"classic"` - variant of the Croston method where the smoothing parameter is fixed to 0.1 (based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_)
626
- - `"SBA"` - variant of the Croston method based on Syntetos-Boylan Approximation (based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_)
627
- - `"optimized"` - variant of the Croston method where the smoothing parameter is optimized (based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_)
625
+ - ``"classic"`` - variant of the Croston method where the smoothing parameter is fixed to 0.1 (based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_)
626
+ - ``"SBA"`` - variant of the Croston method based on Syntetos-Boylan Approximation (based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_)
627
+ - ``"optimized"`` - variant of the Croston method where the smoothing parameter is optimized (based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_)
628
628
 
629
629
  n_jobs : int or float, default = joblib.cpu_count(only_physical_cores=True)
630
630
  Number of CPU cores used to fit the models in parallel.
@@ -94,10 +94,10 @@ class TimeSeriesPredictor:
94
94
  Seasonal period used to compute some evaluation metrics such as mean absolute scaled error (MASE). Defaults to
95
95
  ``None``, in which case the seasonal period is computed based on the data frequency.
96
96
  horizon_weight : List[float], optional
97
- Weight assigned to each time step in the forecast horizon when computing the `eval_metric`. If provided, this
98
- must be a list with `prediction_length` non-negative values, where at least some values are greater than zero.
99
- AutoGluon will automatically normalize the weights so that they sum up to `prediction_length`. By default, all
100
- time steps in the forecast horizon have the same weight, which is equivalent to setting `horizon_weight = [1] * prediction_length`.
97
+ Weight assigned to each time step in the forecast horizon when computing the ``eval_metric``. If provided, this
98
+ must be a list with ``prediction_length`` non-negative values, where at least some values are greater than zero.
99
+ AutoGluon will automatically normalize the weights so that they sum up to ``prediction_length``. By default, all
100
+ time steps in the forecast horizon have the same weight, which is equivalent to setting ``horizon_weight = [1] * prediction_length``.
101
101
 
102
102
  This parameter only affects model selection and ensemble construction; it has no effect on the loss function of
103
103
  the individual forecasting models.
@@ -127,8 +127,8 @@ class TimeSeriesPredictor:
127
127
  Whether to save the logs into a file for later reference
128
128
  log_file_path: Union[str, Path], default = "auto"
129
129
  File path to save the logs.
130
- If auto, logs will be saved under `predictor_path/logs/predictor_log.txt`.
131
- Will be ignored if `log_to_file` is set to False
130
+ If auto, logs will be saved under ``predictor_path/logs/predictor_log.txt``.
131
+ Will be ignored if ``log_to_file`` is set to False
132
132
  cache_predictions : bool, default = True
133
133
  If True, the predictor will cache and reuse the predictions made by individual models whenever
134
134
  :meth:`~autogluon.timeseries.TimeSeriesPredictor.predict`, :meth:`~autogluon.timeseries.TimeSeriesPredictor.leaderboard`,
@@ -476,23 +476,23 @@ class TimeSeriesPredictor:
476
476
 
477
477
  data.static_features["store_id"] = data.static_features["store_id"].astype("category")
478
478
 
479
- If provided data is a `pandas.DataFrame`, AutoGluon will attempt to convert it to a `TimeSeriesDataFrame`.
480
- If a `str` or a `Path` is provided, AutoGluon will attempt to load this file.
479
+ If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
480
+ If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
481
481
  tuning_data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
482
482
  Data reserved for model selection and hyperparameter tuning, rather than training individual models. Also
483
483
  used to compute the validation scores. Note that only the last ``prediction_length`` time steps of each
484
484
  time series are used for computing the validation score.
485
485
 
486
486
  If ``tuning_data`` is provided, multi-window backtesting on training data will be disabled, the
487
- :attr:`num_val_windows` will be set to ``0``, and :attr:`refit_full` will be set to ``False``.
487
+ ``num_val_windows`` will be set to ``0``, and ``refit_full`` will be set to ``False``.
488
488
 
489
489
  Leaving this argument empty and letting AutoGluon automatically generate the validation set from
490
490
  ``train_data`` is a good default.
491
491
 
492
492
  The names and dtypes of columns and static features in ``tuning_data`` must match the ``train_data``.
493
493
 
494
- If provided data is a `pandas.DataFrame`, AutoGluon will attempt to convert it to a `TimeSeriesDataFrame`.
495
- If a `str` or a `Path` is provided, AutoGluon will attempt to load this file.
494
+ If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
495
+ If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
496
496
  time_limit : int, optional
497
497
  Approximately how long :meth:`~autogluon.timeseries.TimeSeriesPredictor.fit` will run (wall-clock time in
498
498
  seconds). If not specified, :meth:`~autogluon.timeseries.TimeSeriesPredictor.fit` will run until all models
@@ -525,7 +525,7 @@ class TimeSeriesPredictor:
525
525
  [`1 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/presets_configs.py>`_,
526
526
  `2 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/models/presets.py>`_].
527
527
 
528
- If no `presets` are selected, user-provided values for `hyperparameters` will be used (defaulting to their
528
+ If no ``presets`` are selected, user-provided values for ``hyperparameters`` will be used (defaulting to their
529
529
  default values specified below).
530
530
  hyperparameters : str or dict, optional
531
531
  Determines what models are trained and what hyperparameters are used by each model.
@@ -626,7 +626,7 @@ class TimeSeriesPredictor:
626
626
  of time series in ``train_data`` are long enough for the chosen number of backtests.
627
627
 
628
628
  Increasing this parameter increases the training time roughly by a factor of ``num_val_windows // refit_every_n_windows``.
629
- See :attr:`refit_every_n_windows` and :attr:`val_step_size`: for details.
629
+ See ``refit_every_n_windows`` and ``val_step_size`` for details.
630
630
 
631
631
  For example, for ``prediction_length=2``, ``num_val_windows=3`` and ``val_step_size=1`` the folds are::
632
632
 
@@ -645,11 +645,11 @@ class TimeSeriesPredictor:
645
645
  This argument has no effect if ``tuning_data`` is provided.
646
646
  refit_every_n_windows: int or None, default = 1
647
647
  When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
648
- windows, where the number of validation windows is specified by `num_val_windows`. Note that in the
649
- default setting where `num_val_windows=1`, this argument has no effect.
648
+ windows, where the number of validation windows is specified by ``num_val_windows``. Note that in the
649
+ default setting where ``num_val_windows=1``, this argument has no effect.
650
650
 
651
651
  If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
652
- `refit_every_n_windows=1`, i.e., all models will be refit for each validation window.
652
+ ``refit_every_n_windows=1``, i.e., all models will be refit for each validation window.
653
653
  refit_full : bool, default = False
654
654
  If True, after training is complete, AutoGluon will attempt to re-train all models using all of training
655
655
  data (including the data initially reserved for validation). This argument has no effect if ``tuning_data``
@@ -798,8 +798,8 @@ class TimeSeriesPredictor:
798
798
  The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
799
799
  the predictor.
800
800
 
801
- If provided data is a `pandas.DataFrame`, AutoGluon will attempt to convert it to a `TimeSeriesDataFrame`.
802
- If a `str` or a `Path` is provided, AutoGluon will attempt to load this file.
801
+ If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
802
+ If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
803
803
  known_covariates : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
804
804
  If ``known_covariates_names`` were specified when creating the predictor, it is necessary to provide the
805
805
  values of the known covariates for each time series during the forecast horizon. Specifically:
@@ -809,7 +809,7 @@ class TimeSeriesPredictor:
809
809
  - Must include ``timestamp`` values for the full forecast horizon (i.e., ``prediction_length`` time steps) following the end of each series in the input ``data``.
810
810
 
811
811
  You can use :meth:`autogluon.timeseries.TimeSeriesPredictor.make_future_data_frame` to generate a template
812
- containing the required ``item_id`` and ``timestamp`` combinations for the `known_covariates` dataframe.
812
+ containing the required ``item_id`` and ``timestamp`` combinations for the ``known_covariates`` dataframe.
813
813
 
814
814
  See example below.
815
815
  model : str, optional
@@ -899,8 +899,8 @@ class TimeSeriesPredictor:
899
899
  The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
900
900
  the predictor.
901
901
 
902
- If provided data is a `pandas.DataFrame`, AutoGluon will attempt to convert it to a `TimeSeriesDataFrame`.
903
- If a `str` or a `Path` is provided, AutoGluon will attempt to load this file.
902
+ If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
903
+ If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
904
904
  model : str, optional
905
905
  Name of the model that you would like to evaluate. By default, the best model during training
906
906
  (with highest validation score) will be used.
@@ -976,8 +976,8 @@ class TimeSeriesPredictor:
976
976
  The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
977
977
  the predictor.
978
978
 
979
- If provided data is a `pandas.DataFrame`, AutoGluon will attempt to convert it to a `TimeSeriesDataFrame`.
980
- If a `str` or a `Path` is provided, AutoGluon will attempt to load this file.
979
+ If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
980
+ If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
981
981
 
982
982
  If ``data`` is not provided, then validation (tuning) data provided during training (or the held out data used for
983
983
  validation if ``tuning_data`` was not explicitly provided ``fit()``) will be used.
@@ -1003,12 +1003,12 @@ class TimeSeriesPredictor:
1003
1003
  permutation importance.
1004
1004
 
1005
1005
  subsample_size : int, default = 50
1006
- The number of items to sample from `data` when computing feature importance. Larger values increase the accuracy of
1007
- the feature importance scores. Runtime linearly scales with `subsample_size`.
1006
+ The number of items to sample from ``data`` when computing feature importance. Larger values increase the accuracy of
1007
+ the feature importance scores. Runtime linearly scales with ``subsample_size``.
1008
1008
  time_limit : float, optional
1009
1009
  Time in seconds to limit the calculation of feature importance. If None, feature importance will calculate without early stopping.
1010
1010
  If ``method="permutation"``, a minimum of 1 full shuffle set will always be evaluated. If a shuffle set evaluation takes longer than
1011
- ``time_limit``, the method will take the length of a shuffle set evaluation to return regardless of the `time_limit`.
1011
+ ``time_limit``, the method will take the length of a shuffle set evaluation to return regardless of the ``time_limit``.
1012
1012
  num_iterations : int, optional
1013
1013
  The number of different iterations of the data that are evaluated. If ``method="permutation"``, this will be interpreted
1014
1014
  as the number of shuffle sets (equivalent to ``num_shuffle_sets`` in :meth:`TabularPredictor.feature_importance`). If ``method="naive"``, the
@@ -1093,7 +1093,7 @@ class TimeSeriesPredictor:
1093
1093
 
1094
1094
  .. warning::
1095
1095
 
1096
- :meth:`autogluon.timeseries.TimeSeriesPredictor.load` uses `pickle` module implicitly, which is known to
1096
+ :meth:`autogluon.timeseries.TimeSeriesPredictor.load` uses ``pickle`` module implicitly, which is known to
1097
1097
  be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during
1098
1098
  unpickling. Never load data that could have come from an untrusted source, or that could have been tampered
1099
1099
  with. **Only load data you trust.**
@@ -1191,10 +1191,10 @@ class TimeSeriesPredictor:
1191
1191
  models : list of str or str, default = 'best'
1192
1192
  Model names of models to persist.
1193
1193
  If 'best' then the model with the highest validation score is persisted (this is the model used for prediction by default).
1194
- If 'all' then all models are persisted. Valid models are listed in this `predictor` by calling `predictor.model_names()`.
1194
+ If 'all' then all models are persisted. Valid models are listed in this ``predictor`` by calling ``predictor.model_names()``.
1195
1195
  with_ancestors : bool, default = True
1196
1196
  If True, all ancestor models of the provided models will also be persisted.
1197
- If False, ensemble models will not have the models they depend on persisted unless those models were specified in `models`.
1197
+ If False, ensemble models will not have the models they depend on persisted unless those models were specified in ``models``.
1198
1198
  This will slow down inference as the ancestor models will still need to be loaded from disk for each predict call.
1199
1199
  Only relevant for ensemble models.
1200
1200
 
@@ -1210,7 +1210,7 @@ class TimeSeriesPredictor:
1210
1210
  disk every time they are asked to make predictions.
1211
1211
 
1212
1212
  Note: Another way to reset the predictor and unpersist models is to reload the predictor from disk
1213
- via `predictor = TimeSeriesPredictor.load(predictor.path)`.
1213
+ via ``predictor = TimeSeriesPredictor.load(predictor.path)``.
1214
1214
 
1215
1215
  Returns
1216
1216
  -------
@@ -1257,27 +1257,27 @@ class TimeSeriesPredictor:
1257
1257
  The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
1258
1258
  the predictor.
1259
1259
 
1260
- If provided data is a `pandas.DataFrame`, AutoGluon will attempt to convert it to a `TimeSeriesDataFrame`.
1261
- If a `str` or a `Path` is provided, AutoGluon will attempt to load this file.
1260
+ If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
1261
+ If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
1262
1262
  cutoff : int, optional
1263
1263
  A *negative* integer less than or equal to ``-1 * prediction_length`` denoting the time step in ``data``
1264
1264
  where the forecast evaluation starts, i.e., time series are evaluated from the ``-cutoff``-th to the
1265
1265
  ``-cutoff + prediction_length``-th time step. Defaults to ``-1 * prediction_length``, using the last
1266
1266
  ``prediction_length`` time steps of each time series for evaluation.
1267
1267
  extra_info : bool, default = False
1268
- If True, the leaderboard will contain an additional column `hyperparameters` with the hyperparameters used
1269
- by each model during training. An empty dictionary `{}` means that the model was trained with default
1268
+ If True, the leaderboard will contain an additional column ``hyperparameters`` with the hyperparameters used
1269
+ by each model during training. An empty dictionary ``{}`` means that the model was trained with default
1270
1270
  hyperparameters.
1271
1271
  extra_metrics : List[Union[str, TimeSeriesScorer]], optional
1272
1272
  A list of metrics to calculate scores for and include in the output DataFrame.
1273
1273
 
1274
- Only valid when `data` is specified. The scores refer to the scores on `data` (same data as used to
1275
- calculate the `score_test` column).
1274
+ Only valid when ``data`` is specified. The scores refer to the scores on ``data`` (same data as used to
1275
+ calculate the ``score_test`` column).
1276
1276
 
1277
- This list can contain any values which would also be valid for `eval_metric` when creating a :class:`~autogluon.timeseries.TimeSeriesPredictor`.
1277
+ This list can contain any values which would also be valid for ``eval_metric`` when creating a :class:`~autogluon.timeseries.TimeSeriesPredictor`.
1278
1278
 
1279
- For each provided `metric`, a column with name `str(metric)` will be added to the leaderboard, containing
1280
- the value of the metric computed on `data`.
1279
+ For each provided ``metric``, a column with name ``str(metric)`` will be added to the leaderboard, containing
1280
+ the value of the metric computed on ``data``.
1281
1281
  display : bool, default = False
1282
1282
  If True, the leaderboard DataFrame will be printed.
1283
1283
  use_cache : bool, default = True
@@ -1315,7 +1315,7 @@ class TimeSeriesPredictor:
1315
1315
  return leaderboard
1316
1316
 
1317
1317
  def make_future_data_frame(self, data: Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]) -> pd.DataFrame:
1318
- """Generate a dataframe with the `item_id` and `timestamp` values corresponding to the forecast horizon.
1318
+ """Generate a dataframe with the ``item_id`` and ``timestamp`` values corresponding to the forecast horizon.
1319
1319
 
1320
1320
  Parameters
1321
1321
  ----------
@@ -1325,8 +1325,8 @@ class TimeSeriesPredictor:
1325
1325
  Returns
1326
1326
  -------
1327
1327
  forecast_horizon : pd.DataFrame
1328
- Data frame with columns `item_id` and `timestamp` corresponding to the forecast horizon. For each item ID
1329
- in `data`, `forecast_horizon` will contain the timestamps for the next `prediction_length` time steps,
1328
+ Data frame with columns ``item_id`` and ``timestamp`` corresponding to the forecast horizon. For each item ID
1329
+ in ``data``, ``forecast_horizon`` will contain the timestamps for the next ``prediction_length`` time steps,
1330
1330
  following the end of each series in the input data.
1331
1331
 
1332
1332
  Examples
@@ -1547,8 +1547,8 @@ class TimeSeriesPredictor:
1547
1547
  Name of the column in ``predictions`` that will be plotted as the point forecast. Defaults to ``"0.5"``,
1548
1548
  if this column is present in ``predictions``, otherwise ``"mean"``.
1549
1549
  matplotlib_rc_params : dict, optional
1550
- Dictionary describing the plot style that will be passed to [`matplotlib.pyplot.rc_context`](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.rc_context.html).
1551
- See [matplotlib documentation](https://matplotlib.org/stable/users/explain/customizing.html#the-default-matplotlibrc-file) for the list of available options.
1550
+ Dictionary describing the plot style that will be passed to `matplotlib.pyplot.rc_context <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.rc_context.html>`_.
1551
+ See `matplotlib documentation <https://matplotlib.org/stable/users/explain/customizing.html#the-default-matplotlibrc-file>`_ for the list of available options.
1552
1552
  """
1553
1553
  import matplotlib.pyplot as plt
1554
1554
 
@@ -41,17 +41,17 @@ class GlobalCovariateRegressor(CovariateRegressor):
41
41
  Parameters
42
42
  ----------
43
43
  model_name : str
44
- Name of the tabular regression model. See `autogluon.tabular.registry.ag_model_registry` or
44
+ Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
45
45
  `the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
46
46
  tabular models.
47
47
  model_hyperparameters : dict or None
48
48
  Hyperparameters passed to the tabular regression model.
49
49
  eval_metric : str
50
- Metric provided as `eval_metric` to the tabular regression model. Must be compatible with `problem_type="regression"`.
50
+ Metric provided as ``eval_metric`` to the tabular regression model. Must be compatible with `problem_type="regression"`.
51
51
  refit_during_predict : bool
52
- If True, the model will be re-trained every time `fit_transform` is called. If False, the model will only be
53
- trained the first time that `fit_transform` is called, and future calls to `fit_transform` will only perform a
54
- `transform`.
52
+ If True, the model will be re-trained every time ``fit_transform`` is called. If False, the model will only be
53
+ trained the first time that ``fit_transform`` is called, and future calls to ``fit_transform`` will only perform a
54
+ ``transform``.
55
55
  max_num_samples : int or None
56
56
  If not None, training dataset passed to regression model will contain at most this many rows.
57
57
  covariate_metadata : CovariateMetadata
@@ -65,7 +65,7 @@ class GlobalCovariateRegressor(CovariateRegressor):
65
65
  The fraction of the time_limit that will be reserved for model training. The remainder (1 - fit_time_fraction)
66
66
  will be reserved for prediction.
67
67
 
68
- If the estimated prediction time exceeds `(1 - fit_time_fraction) * time_limit`, the regressor will be disabled.
68
+ If the estimated prediction time exceeds ``(1 - fit_time_fraction) * time_limit``, the regressor will be disabled.
69
69
  include_static_features: bool
70
70
  If True, static features will be included as features for the regressor.
71
71
  include_item_id: bool
@@ -239,7 +239,9 @@ def get_covariate_regressor(
239
239
  if covariate_regressor is None:
240
240
  return None
241
241
  elif len(covariate_metadata.known_covariates + covariate_metadata.static_features) == 0:
242
- logger.info("\tSkipping covariate_regressor since the dataset contains no covariates or static features.")
242
+ logger.info(
243
+ "\tSkipping covariate_regressor since the dataset contains no known_covariates or static_features."
244
+ )
243
245
  return None
244
246
  else:
245
247
  if isinstance(covariate_regressor, str):
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250716"
3
+ __version__ = "1.3.2b20250718"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250716
3
+ Version: 1.3.2b20250718
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250716
59
- Requires-Dist: autogluon.common==1.3.2b20250716
60
- Requires-Dist: autogluon.features==1.3.2b20250716
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250716
58
+ Requires-Dist: autogluon.core[raytune]==1.3.2b20250718
59
+ Requires-Dist: autogluon.common==1.3.2b20250718
60
+ Requires-Dist: autogluon.features==1.3.2b20250718
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250718
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -1,20 +1,20 @@
1
- autogluon.timeseries-1.3.2b20250716-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.2b20250718-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
- autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zUZoy4,88168
6
- autogluon/timeseries/regressor.py,sha256=G0zecniv85wr8EXlXsbiqpKYHE5KeNALHRzPp_hO5qs,12001
5
+ autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3WSAJs,88273
6
+ autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=bPJmn8IYFHHx5wv_RbAGbiMuX0PyNDOc2m8l8Fn-Gx8,91
9
+ autogluon/timeseries/version.py,sha256=t7hPQFF0BzYTBfD-vM9hoER3q-C5x0pjSWoVO1dcT0w,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=pvL85NCrwcIYr7lxFzY2NZ57yUL82nl6Ypdm1z3ho04,51193
13
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=57PTFaxcOHAe85-SFD1RbAZ3jKMMKgiBGffhEh7H6BY,51233
14
14
  autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
15
- autogluon/timeseries/metrics/abstract.py,sha256=BpHVmzkzM6EN63NQrDRkApIeAyrpT6Y9LZiPEygaxvE,11829
16
- autogluon/timeseries/metrics/point.py,sha256=xllyGh11otbmUVHyIaceROPR3qyllWPQ9xlSmIGI3EI,18306
17
- autogluon/timeseries/metrics/quantile.py,sha256=vhmETtjPsIfVlvtILNAT6F2PtIDNPrOroy-U1FQbgw8,4632
15
+ autogluon/timeseries/metrics/abstract.py,sha256=Nu2WKMRmJT-oIpNHMOa5Ulw5WlOKA8jB-rm6Bnf2I2o,11864
16
+ autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
17
+ autogluon/timeseries/metrics/quantile.py,sha256=x0cq44fXRoMiuI4BVQ7mpWk1YgrK4OwLTlJAhCHQ7Xg,4634
18
18
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
19
  autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
20
20
  autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
@@ -23,8 +23,8 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYe
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=9J95mXR2V_DLXHz0p-VaHA2wi3mF33KggEKMI3YViHM,37641
27
- autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=W_zJQmWZIkaoZ5tPkuQmQl9AeBd72vZDSMp5zAhBmvw,22764
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=l10XXajPzUdPGpqC2fSL1jxaXRzQ6b6IBmLLPq59qQY,37669
27
+ autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=9jOpk1y709od1XvOqLDxz8kVSeCclnlsGwqaZYsxfn0,23065
28
28
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
29
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
30
30
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
@@ -41,12 +41,12 @@ autogluon/timeseries/models/ensemble/greedy.py,sha256=s4gz5Qqrf34Wtu6E1JtyK3EvIy
41
41
  autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
42
42
  autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
43
43
  autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
44
- autogluon/timeseries/models/gluonts/models.py,sha256=Pi_zCRkslt2-LXkZpE56aRx9J4gRCOVabqYltPtI9tE,25718
44
+ autogluon/timeseries/models/gluonts/models.py,sha256=XaIsPqeDIh-CL8Sw59Koo6_UrVCJFE0jduk3IKXQFuM,25728
45
45
  autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
46
46
  autogluon/timeseries/models/local/abstract_local_model.py,sha256=BVCMC0wNMwrrDfZy_SQJeEajPmYBAyUlMu4qrTkWJBQ,11535
47
47
  autogluon/timeseries/models/local/naive.py,sha256=TAiQLt3fGCQoZKjBzmlhosV2XVEZ1urtPHDhM7Mf2i8,7408
48
48
  autogluon/timeseries/models/local/npts.py,sha256=I3y5g-718TVVhAbotfJ74wvLfLQ6HfLwA_ivrEWY7Qc,4182
49
- autogluon/timeseries/models/local/statsforecast.py,sha256=h2ra9yWEY8DTUSPzgwS8nBKdk7dThwPjY1Os-ewRId4,33044
49
+ autogluon/timeseries/models/local/statsforecast.py,sha256=JzjEFVa1piUAo1S4Rgo5651WRyBkJivZsmgnFZ1Efnw,33050
50
50
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
51
51
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
52
52
  autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
61
61
  autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
62
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
63
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.3.2b20250716.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.3.2b20250716.dist-info/METADATA,sha256=XHaWdSPVEdj4tTdf4abtTZ733Rsejd9rKPVdTyHIzfM,12445
66
- autogluon.timeseries-1.3.2b20250716.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.3.2b20250716.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.3.2b20250716.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250716.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.3.2b20250716.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.3.2b20250716.dist-info/RECORD,,
64
+ autogluon.timeseries-1.3.2b20250718.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
+ autogluon.timeseries-1.3.2b20250718.dist-info/METADATA,sha256=5NgQMqK9-BQHKMYmm6aCcv1AyWOCjLGwnqtnxxxHsWE,12445
66
+ autogluon.timeseries-1.3.2b20250718.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
+ autogluon.timeseries-1.3.2b20250718.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
+ autogluon.timeseries-1.3.2b20250718.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.2b20250718.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
+ autogluon.timeseries-1.3.2b20250718.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
+ autogluon.timeseries-1.3.2b20250718.dist-info/RECORD,,