autogluon.timeseries 1.3.2b20250716__py3-none-any.whl → 1.3.2b20250718__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/dataset/ts_dataframe.py +11 -11
- autogluon/timeseries/metrics/abstract.py +6 -5
- autogluon/timeseries/metrics/point.py +1 -1
- autogluon/timeseries/metrics/quantile.py +1 -1
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +6 -6
- autogluon/timeseries/models/autogluon_tabular/per_step.py +10 -7
- autogluon/timeseries/models/gluonts/models.py +5 -5
- autogluon/timeseries/models/local/statsforecast.py +3 -3
- autogluon/timeseries/predictor.py +44 -44
- autogluon/timeseries/regressor.py +9 -7
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/RECORD +20 -20
- /autogluon.timeseries-1.3.2b20250716-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250718-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250716.dist-info → autogluon.timeseries-1.3.2b20250718.dist-info}/zip-safe +0 -0
@@ -456,7 +456,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
456
456
|
Number of items (individual time series) randomly selected to infer the frequency. Lower values speed up
|
457
457
|
the method, but increase the chance that some items with invalid frequency are missed by subsampling.
|
458
458
|
|
459
|
-
If set to
|
459
|
+
If set to ``None``, all items will be used for inferring the frequency.
|
460
460
|
raise_if_irregular : bool, default = False
|
461
461
|
If True, an exception will be raised if some items have an irregular frequency, or if different items have
|
462
462
|
different frequencies.
|
@@ -467,7 +467,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
467
467
|
If all time series have a regular frequency, returns a pandas-compatible `frequency alias <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
|
468
468
|
|
469
469
|
If some items have an irregular frequency or if different items have different frequencies, returns string
|
470
|
-
|
470
|
+
``IRREG``.
|
471
471
|
"""
|
472
472
|
ts_df = self
|
473
473
|
if num_items is not None and ts_df.num_items > num_items:
|
@@ -536,7 +536,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
536
536
|
def num_timesteps_per_item(self) -> pd.Series:
|
537
537
|
"""Number of observations in each time series in the dataframe.
|
538
538
|
|
539
|
-
Returns a
|
539
|
+
Returns a ``pandas.Series`` with ``item_id`` as index and number of observations per item as values.
|
540
540
|
"""
|
541
541
|
counts = pd.Series(self.index.codes[0]).value_counts(sort=False)
|
542
542
|
counts.index = self.index.levels[0][counts.index]
|
@@ -603,7 +603,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
603
603
|
This operation is equivalent to selecting a slice ``[start_index : end_index]`` from each time series, and then
|
604
604
|
combining these slices into a new ``TimeSeriesDataFrame``. See examples below.
|
605
605
|
|
606
|
-
It is recommended to sort the index with
|
606
|
+
It is recommended to sort the index with ``ts_df.sort_index()`` before calling this method to take advantage of
|
607
607
|
a fast optimized algorithm.
|
608
608
|
|
609
609
|
Parameters
|
@@ -798,11 +798,11 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
798
798
|
method : str, default = "auto"
|
799
799
|
Method used to impute missing values.
|
800
800
|
|
801
|
-
- "auto" - first forward fill (to fill the in-between and trailing NaNs), then backward fill (to fill the leading NaNs)
|
802
|
-
- "ffill" or "pad" - propagate last valid observation forward. Note: missing values at the start of the time series are not filled.
|
803
|
-
- "bfill" or "backfill" - use next valid observation to fill gap. Note: this may result in information leakage; missing values at the end of the time series are not filled.
|
804
|
-
- "constant" - replace NaNs with the given constant ``value``.
|
805
|
-
- "interpolate" - fill NaN values using linear interpolation. Note: this may result in information leakage.
|
801
|
+
- ``"auto"`` - first forward fill (to fill the in-between and trailing NaNs), then backward fill (to fill the leading NaNs)
|
802
|
+
- ``"ffill"`` or ``"pad"`` - propagate last valid observation forward. Note: missing values at the start of the time series are not filled.
|
803
|
+
- ``"bfill"`` or ``"backfill"`` - use next valid observation to fill gap. Note: this may result in information leakage; missing values at the end of the time series are not filled.
|
804
|
+
- ``"constant"`` - replace NaNs with the given constant ``value``.
|
805
|
+
- ``"interpolate"`` - fill NaN values using linear interpolation. Note: this may result in information leakage.
|
806
806
|
value : float, default = 0.0
|
807
807
|
Value used by the "constant" imputation method.
|
808
808
|
|
@@ -910,7 +910,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
910
910
|
The forecast horizon, i.e., How many time steps into the future must be predicted.
|
911
911
|
known_covariates_names : List[str], optional
|
912
912
|
Names of the dataframe columns that contain covariates known in the future.
|
913
|
-
See
|
913
|
+
See ``known_covariates_names`` of :class:`~autogluon.timeseries.TimeSeriesPredictor` for more details.
|
914
914
|
|
915
915
|
Returns
|
916
916
|
-------
|
@@ -1103,7 +1103,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
|
|
1103
1103
|
return resampled_df
|
1104
1104
|
|
1105
1105
|
def to_data_frame(self) -> pd.DataFrame:
|
1106
|
-
"""Convert
|
1106
|
+
"""Convert ``TimeSeriesDataFrame`` to a ``pandas.DataFrame``"""
|
1107
1107
|
return pd.DataFrame(self)
|
1108
1108
|
|
1109
1109
|
def get_indptr(self) -> np.ndarray:
|
@@ -20,14 +20,14 @@ class TimeSeriesScorer:
|
|
20
20
|
Parameters
|
21
21
|
----------
|
22
22
|
prediction_length : int, default = 1
|
23
|
-
The length of the forecast horizon. The predictions provided to the
|
23
|
+
The length of the forecast horizon. The predictions provided to the ``TimeSeriesScorer`` are expected to contain
|
24
24
|
a forecast for this many time steps for each time series.
|
25
25
|
seasonal_period : int or None, default = None
|
26
26
|
Seasonal period used to compute some evaluation metrics such as mean absolute scaled error (MASE). Defaults to
|
27
|
-
|
27
|
+
``None``, in which case the seasonal period is computed based on the data frequency.
|
28
28
|
horizon_weight : Sequence[float], np.ndarray or None, default = None
|
29
29
|
Weight assigned to each time step in the forecast horizon when computing the metric. If provided, the
|
30
|
-
|
30
|
+
``horizon_weight`` will be stored as a numpy array of shape ``[1, prediction_length]``.
|
31
31
|
|
32
32
|
Attributes
|
33
33
|
----------
|
@@ -44,8 +44,9 @@ class TimeSeriesScorer:
|
|
44
44
|
Whether the given metric uses the quantile predictions. Some models will modify the training procedure if they
|
45
45
|
are trained to optimize a quantile metric.
|
46
46
|
equivalent_tabular_regression_metric : str
|
47
|
-
Name of an equivalent metric used by AutoGluon-Tabular with ``problem_type="regression"``. Used by
|
48
|
-
train
|
47
|
+
Name of an equivalent metric used by AutoGluon-Tabular with ``problem_type="regression"``. Used by forecasting
|
48
|
+
models that train tabular regression models under the hood. This attribute should only be specified by point
|
49
|
+
forecast metrics.
|
49
50
|
"""
|
50
51
|
|
51
52
|
greater_is_better_internal: bool = False
|
@@ -143,7 +143,7 @@ class WAPE(TimeSeriesScorer):
|
|
143
143
|
- not sensitive to outliers
|
144
144
|
- prefers models that accurately estimate the median
|
145
145
|
|
146
|
-
If
|
146
|
+
If ``self.horizon_weight`` is provided, both the errors and the target time series in the denominator will be re-weighted.
|
147
147
|
|
148
148
|
References
|
149
149
|
----------
|
@@ -25,7 +25,7 @@ class WQL(TimeSeriesScorer):
|
|
25
25
|
- scale-dependent (time series with large absolute value contribute more to the loss)
|
26
26
|
- equivalent to WAPE if ``quantile_levels = [0.5]``
|
27
27
|
|
28
|
-
If
|
28
|
+
If ``horizon_weight`` is provided, both the errors and the target time series in the denominator will be re-weighted.
|
29
29
|
|
30
30
|
References
|
31
31
|
----------
|
@@ -505,7 +505,7 @@ class DirectTabularModel(AbstractMLForecastModel):
|
|
505
505
|
target_scaler : {"standard", "mean_abs", "min_max", "robust", None}, default = "mean_abs"
|
506
506
|
Scaling applied to each time series. Scaling is applied after differencing.
|
507
507
|
model_name : str, default = "GBM"
|
508
|
-
Name of the tabular regression model. See
|
508
|
+
Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
|
509
509
|
`the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
|
510
510
|
tabular models.
|
511
511
|
model_hyperparameters : Dict[str, Any], optional
|
@@ -513,8 +513,8 @@ class DirectTabularModel(AbstractMLForecastModel):
|
|
513
513
|
max_num_items : int or None, default = 20_000
|
514
514
|
If not None, the model will randomly select this many time series for training and validation.
|
515
515
|
max_num_samples : int or None, default = 1_000_000
|
516
|
-
If not None, training dataset passed to
|
517
|
-
end of each time series).
|
516
|
+
If not None, training dataset passed to the tabular regression model will contain at most this many rows
|
517
|
+
(starting from the end of each time series).
|
518
518
|
"""
|
519
519
|
|
520
520
|
@property
|
@@ -686,7 +686,7 @@ class RecursiveTabularModel(AbstractMLForecastModel):
|
|
686
686
|
Dictionary mapping lag periods to transformation functions applied to lagged target values (e.g., rolling mean).
|
687
687
|
See `MLForecast documentation <https://nixtlaverse.nixtla.io/mlforecast/lag_transforms.html>`_ for more details.
|
688
688
|
model_name : str, default = "GBM"
|
689
|
-
Name of the tabular regression model. See
|
689
|
+
Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
|
690
690
|
`the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
|
691
691
|
tabular models.
|
692
692
|
model_hyperparameters : Dict[str, Any], optional
|
@@ -694,8 +694,8 @@ class RecursiveTabularModel(AbstractMLForecastModel):
|
|
694
694
|
max_num_items : int or None, default = 20_000
|
695
695
|
If not None, the model will randomly select this many time series for training and validation.
|
696
696
|
max_num_samples : int or None, default = 1_000_000
|
697
|
-
If not None, training dataset passed to
|
698
|
-
end of each time series).
|
697
|
+
If not None, training dataset passed to the tabular regression model will contain at most this many rows
|
698
|
+
(starting from the end of each time series).
|
699
699
|
"""
|
700
700
|
|
701
701
|
def get_hyperparameters(self) -> Dict[str, Any]:
|
@@ -44,18 +44,18 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
|
|
44
44
|
obtained by assuming that the residuals follow zero-mean normal distribution.
|
45
45
|
|
46
46
|
This model uses `mlforecast <https://github.com/Nixtla/mlforecast>`_ under the hood for efficient preprocessing,
|
47
|
-
but the implementation of the per-step forecasting strategy is different from the
|
47
|
+
but the implementation of the per-step forecasting strategy is different from the ``max_horizon`` in ``mlforecast``.
|
48
48
|
|
49
49
|
|
50
50
|
Other Parameters
|
51
51
|
----------------
|
52
52
|
trailing_lags : List[int], default = None
|
53
53
|
Trailing window lags of the target that will be used as features for predictions.
|
54
|
-
Trailing lags are shifted per forecast step: model for step
|
55
|
-
If None, defaults to [1, 2, ..., 12]
|
54
|
+
Trailing lags are shifted per forecast step: model for step ``h`` uses ``[lag+h for lag in trailing_lags]``.
|
55
|
+
If None, defaults to ``[1, 2, ..., 12]``.
|
56
56
|
seasonal_lags: List[int], default = None
|
57
57
|
Seasonal lags of the target used as features. Unlike trailing lags, seasonal lags are not shifted
|
58
|
-
but filtered by availability: model for step
|
58
|
+
but filtered by availability: model for step ``h`` uses ``[lag for lag in seasonal_lags if lag > h]``.
|
59
59
|
If None, determined automatically based on data frequency.
|
60
60
|
date_features : List[Union[str, Callable]], default = None
|
61
61
|
Features computed from the dates. Can be pandas date attributes or functions that will take the dates as input.
|
@@ -63,16 +63,19 @@ class PerStepTabularModel(AbstractTimeSeriesModel):
|
|
63
63
|
target_scaler : {"standard", "mean_abs", "min_max", "robust", None}, default = "mean_abs"
|
64
64
|
Scaling applied to each time series.
|
65
65
|
model_name : str, default = "CAT"
|
66
|
-
Name of the tabular regression model. See
|
66
|
+
Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
|
67
67
|
`the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
|
68
68
|
tabular models.
|
69
69
|
model_hyperparameters : Dict[str, Any], optional
|
70
70
|
Hyperparameters passed to the tabular regression model.
|
71
|
+
validation_fraction : float or None, default = 0.1
|
72
|
+
Fraction of the training data to use for validation. If None or 0.0, no validation set is created.
|
73
|
+
Validation set contains the most recent observations (chronologically). Must be between 0.0 and 1.0.
|
71
74
|
max_num_items : int or None, default = 20_000
|
72
75
|
If not None, the model will randomly select this many time series for training and validation.
|
73
76
|
max_num_samples : int or None, default = 1_000_000
|
74
|
-
If not None, training dataset passed to
|
75
|
-
end of each time series).
|
77
|
+
If not None, training dataset passed to the tabular regression model will contain at most this many rows
|
78
|
+
(starting from the end of each time series).
|
76
79
|
n_jobs : int or None, default = None
|
77
80
|
Number of parallel jobs for fitting models across forecast horizons.
|
78
81
|
If None, automatically determined based on available memory to prevent OOM errors.
|
@@ -60,7 +60,7 @@ class DeepARModel(AbstractGluonTSModel):
|
|
60
60
|
Distribution output object that defines how the model output is converted to a forecast, and how the loss is computed.
|
61
61
|
scaling: bool, default = True
|
62
62
|
If True, mean absolute scaling will be applied to each *context window* during training & prediction.
|
63
|
-
Note that this is different from the
|
63
|
+
Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
|
64
64
|
max_epochs : int, default = 100
|
65
65
|
Number of epochs the model will be trained for
|
66
66
|
batch_size : int, default = 64
|
@@ -119,7 +119,7 @@ class SimpleFeedForwardModel(AbstractGluonTSModel):
|
|
119
119
|
Whether to use batch normalization
|
120
120
|
mean_scaling : bool, default = True
|
121
121
|
If True, mean absolute scaling will be applied to each *context window* during training & prediction.
|
122
|
-
Note that this is different from the
|
122
|
+
Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
|
123
123
|
max_epochs : int, default = 100
|
124
124
|
Number of epochs the model will be trained for
|
125
125
|
batch_size : int, default = 64
|
@@ -261,7 +261,7 @@ class DLinearModel(AbstractGluonTSModel):
|
|
261
261
|
Scaling applied to each *context window* during training & prediction.
|
262
262
|
One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
|
263
263
|
|
264
|
-
Note that this is different from the
|
264
|
+
Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
|
265
265
|
max_epochs : int, default = 100
|
266
266
|
Number of epochs the model will be trained for
|
267
267
|
batch_size : int, default = 64
|
@@ -325,7 +325,7 @@ class PatchTSTModel(AbstractGluonTSModel):
|
|
325
325
|
Scaling applied to each *context window* during training & prediction.
|
326
326
|
One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
|
327
327
|
|
328
|
-
Note that this is different from the
|
328
|
+
Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
|
329
329
|
max_epochs : int, default = 100
|
330
330
|
Number of epochs the model will be trained for
|
331
331
|
batch_size : int, default = 64
|
@@ -489,7 +489,7 @@ class TiDEModel(AbstractGluonTSModel):
|
|
489
489
|
Scaling applied to each *context window* during training & prediction.
|
490
490
|
One of ``"mean"`` (mean absolute scaling), ``"std"`` (standardization), ``None`` (no scaling).
|
491
491
|
|
492
|
-
Note that this is different from the
|
492
|
+
Note that this is different from the ``target_scaler`` that is applied to the *entire time series*.
|
493
493
|
max_epochs : int, default = 100
|
494
494
|
Number of epochs the model will be trained for
|
495
495
|
batch_size : int, default = 256
|
@@ -622,9 +622,9 @@ class CrostonModel(AbstractStatsForecastIntermittentDemandModel):
|
|
622
622
|
variant : {"SBA", "classic", "optimized"}, default = "SBA"
|
623
623
|
Variant of the Croston model that is used. Available options:
|
624
624
|
|
625
|
-
-
|
626
|
-
-
|
627
|
-
-
|
625
|
+
- ``"classic"`` - variant of the Croston method where the smoothing parameter is fixed to 0.1 (based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_)
|
626
|
+
- ``"SBA"`` - variant of the Croston method based on Syntetos-Boylan Approximation (based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_)
|
627
|
+
- ``"optimized"`` - variant of the Croston method where the smoothing parameter is optimized (based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_)
|
628
628
|
|
629
629
|
n_jobs : int or float, default = joblib.cpu_count(only_physical_cores=True)
|
630
630
|
Number of CPU cores used to fit the models in parallel.
|
@@ -94,10 +94,10 @@ class TimeSeriesPredictor:
|
|
94
94
|
Seasonal period used to compute some evaluation metrics such as mean absolute scaled error (MASE). Defaults to
|
95
95
|
``None``, in which case the seasonal period is computed based on the data frequency.
|
96
96
|
horizon_weight : List[float], optional
|
97
|
-
Weight assigned to each time step in the forecast horizon when computing the
|
98
|
-
must be a list with
|
99
|
-
AutoGluon will automatically normalize the weights so that they sum up to
|
100
|
-
time steps in the forecast horizon have the same weight, which is equivalent to setting
|
97
|
+
Weight assigned to each time step in the forecast horizon when computing the ``eval_metric``. If provided, this
|
98
|
+
must be a list with ``prediction_length`` non-negative values, where at least some values are greater than zero.
|
99
|
+
AutoGluon will automatically normalize the weights so that they sum up to ``prediction_length``. By default, all
|
100
|
+
time steps in the forecast horizon have the same weight, which is equivalent to setting ``horizon_weight = [1] * prediction_length``.
|
101
101
|
|
102
102
|
This parameter only affects model selection and ensemble construction; it has no effect on the loss function of
|
103
103
|
the individual forecasting models.
|
@@ -127,8 +127,8 @@ class TimeSeriesPredictor:
|
|
127
127
|
Whether to save the logs into a file for later reference
|
128
128
|
log_file_path: Union[str, Path], default = "auto"
|
129
129
|
File path to save the logs.
|
130
|
-
If auto, logs will be saved under
|
131
|
-
Will be ignored if
|
130
|
+
If auto, logs will be saved under ``predictor_path/logs/predictor_log.txt``.
|
131
|
+
Will be ignored if ``log_to_file`` is set to False
|
132
132
|
cache_predictions : bool, default = True
|
133
133
|
If True, the predictor will cache and reuse the predictions made by individual models whenever
|
134
134
|
:meth:`~autogluon.timeseries.TimeSeriesPredictor.predict`, :meth:`~autogluon.timeseries.TimeSeriesPredictor.leaderboard`,
|
@@ -476,23 +476,23 @@ class TimeSeriesPredictor:
|
|
476
476
|
|
477
477
|
data.static_features["store_id"] = data.static_features["store_id"].astype("category")
|
478
478
|
|
479
|
-
If provided data is a
|
480
|
-
If a
|
479
|
+
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
480
|
+
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
481
481
|
tuning_data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
|
482
482
|
Data reserved for model selection and hyperparameter tuning, rather than training individual models. Also
|
483
483
|
used to compute the validation scores. Note that only the last ``prediction_length`` time steps of each
|
484
484
|
time series are used for computing the validation score.
|
485
485
|
|
486
486
|
If ``tuning_data`` is provided, multi-window backtesting on training data will be disabled, the
|
487
|
-
|
487
|
+
``num_val_windows`` will be set to ``0``, and ``refit_full`` will be set to ``False``.
|
488
488
|
|
489
489
|
Leaving this argument empty and letting AutoGluon automatically generate the validation set from
|
490
490
|
``train_data`` is a good default.
|
491
491
|
|
492
492
|
The names and dtypes of columns and static features in ``tuning_data`` must match the ``train_data``.
|
493
493
|
|
494
|
-
If provided data is a
|
495
|
-
If a
|
494
|
+
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
495
|
+
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
496
496
|
time_limit : int, optional
|
497
497
|
Approximately how long :meth:`~autogluon.timeseries.TimeSeriesPredictor.fit` will run (wall-clock time in
|
498
498
|
seconds). If not specified, :meth:`~autogluon.timeseries.TimeSeriesPredictor.fit` will run until all models
|
@@ -525,7 +525,7 @@ class TimeSeriesPredictor:
|
|
525
525
|
[`1 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/configs/presets_configs.py>`_,
|
526
526
|
`2 <https://github.com/autogluon/autogluon/blob/stable/timeseries/src/autogluon/timeseries/models/presets.py>`_].
|
527
527
|
|
528
|
-
If no
|
528
|
+
If no ``presets`` are selected, user-provided values for ``hyperparameters`` will be used (defaulting to their
|
529
529
|
default values specified below).
|
530
530
|
hyperparameters : str or dict, optional
|
531
531
|
Determines what models are trained and what hyperparameters are used by each model.
|
@@ -626,7 +626,7 @@ class TimeSeriesPredictor:
|
|
626
626
|
of time series in ``train_data`` are long enough for the chosen number of backtests.
|
627
627
|
|
628
628
|
Increasing this parameter increases the training time roughly by a factor of ``num_val_windows // refit_every_n_windows``.
|
629
|
-
See
|
629
|
+
See ``refit_every_n_windows`` and ``val_step_size`` for details.
|
630
630
|
|
631
631
|
For example, for ``prediction_length=2``, ``num_val_windows=3`` and ``val_step_size=1`` the folds are::
|
632
632
|
|
@@ -645,11 +645,11 @@ class TimeSeriesPredictor:
|
|
645
645
|
This argument has no effect if ``tuning_data`` is provided.
|
646
646
|
refit_every_n_windows: int or None, default = 1
|
647
647
|
When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
|
648
|
-
windows, where the number of validation windows is specified by
|
649
|
-
default setting where
|
648
|
+
windows, where the number of validation windows is specified by ``num_val_windows``. Note that in the
|
649
|
+
default setting where ``num_val_windows=1``, this argument has no effect.
|
650
650
|
|
651
651
|
If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
|
652
|
-
|
652
|
+
``refit_every_n_windows=1``, i.e., all models will be refit for each validation window.
|
653
653
|
refit_full : bool, default = False
|
654
654
|
If True, after training is complete, AutoGluon will attempt to re-train all models using all of training
|
655
655
|
data (including the data initially reserved for validation). This argument has no effect if ``tuning_data``
|
@@ -798,8 +798,8 @@ class TimeSeriesPredictor:
|
|
798
798
|
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
799
799
|
the predictor.
|
800
800
|
|
801
|
-
If provided data is a
|
802
|
-
If a
|
801
|
+
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
802
|
+
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
803
803
|
known_covariates : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
|
804
804
|
If ``known_covariates_names`` were specified when creating the predictor, it is necessary to provide the
|
805
805
|
values of the known covariates for each time series during the forecast horizon. Specifically:
|
@@ -809,7 +809,7 @@ class TimeSeriesPredictor:
|
|
809
809
|
- Must include ``timestamp`` values for the full forecast horizon (i.e., ``prediction_length`` time steps) following the end of each series in the input ``data``.
|
810
810
|
|
811
811
|
You can use :meth:`autogluon.timeseries.TimeSeriesPredictor.make_future_data_frame` to generate a template
|
812
|
-
containing the required ``item_id`` and ``timestamp`` combinations for the
|
812
|
+
containing the required ``item_id`` and ``timestamp`` combinations for the ``known_covariates`` dataframe.
|
813
813
|
|
814
814
|
See example below.
|
815
815
|
model : str, optional
|
@@ -899,8 +899,8 @@ class TimeSeriesPredictor:
|
|
899
899
|
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
900
900
|
the predictor.
|
901
901
|
|
902
|
-
If provided data is a
|
903
|
-
If a
|
902
|
+
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
903
|
+
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
904
904
|
model : str, optional
|
905
905
|
Name of the model that you would like to evaluate. By default, the best model during training
|
906
906
|
(with highest validation score) will be used.
|
@@ -976,8 +976,8 @@ class TimeSeriesPredictor:
|
|
976
976
|
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
977
977
|
the predictor.
|
978
978
|
|
979
|
-
If provided data is a
|
980
|
-
If a
|
979
|
+
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
980
|
+
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
981
981
|
|
982
982
|
If ``data`` is not provided, then validation (tuning) data provided during training (or the held out data used for
|
983
983
|
validation if ``tuning_data`` was not explicitly provided ``fit()``) will be used.
|
@@ -1003,12 +1003,12 @@ class TimeSeriesPredictor:
|
|
1003
1003
|
permutation importance.
|
1004
1004
|
|
1005
1005
|
subsample_size : int, default = 50
|
1006
|
-
The number of items to sample from
|
1007
|
-
the feature importance scores. Runtime linearly scales with
|
1006
|
+
The number of items to sample from ``data`` when computing feature importance. Larger values increase the accuracy of
|
1007
|
+
the feature importance scores. Runtime linearly scales with ``subsample_size``.
|
1008
1008
|
time_limit : float, optional
|
1009
1009
|
Time in seconds to limit the calculation of feature importance. If None, feature importance will calculate without early stopping.
|
1010
1010
|
If ``method="permutation"``, a minimum of 1 full shuffle set will always be evaluated. If a shuffle set evaluation takes longer than
|
1011
|
-
``time_limit``, the method will take the length of a shuffle set evaluation to return regardless of the
|
1011
|
+
``time_limit``, the method will take the length of a shuffle set evaluation to return regardless of the ``time_limit``.
|
1012
1012
|
num_iterations : int, optional
|
1013
1013
|
The number of different iterations of the data that are evaluated. If ``method="permutation"``, this will be interpreted
|
1014
1014
|
as the number of shuffle sets (equivalent to ``num_shuffle_sets`` in :meth:`TabularPredictor.feature_importance`). If ``method="naive"``, the
|
@@ -1093,7 +1093,7 @@ class TimeSeriesPredictor:
|
|
1093
1093
|
|
1094
1094
|
.. warning::
|
1095
1095
|
|
1096
|
-
:meth:`autogluon.timeseries.TimeSeriesPredictor.load` uses
|
1096
|
+
:meth:`autogluon.timeseries.TimeSeriesPredictor.load` uses ``pickle`` module implicitly, which is known to
|
1097
1097
|
be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during
|
1098
1098
|
unpickling. Never load data that could have come from an untrusted source, or that could have been tampered
|
1099
1099
|
with. **Only load data you trust.**
|
@@ -1191,10 +1191,10 @@ class TimeSeriesPredictor:
|
|
1191
1191
|
models : list of str or str, default = 'best'
|
1192
1192
|
Model names of models to persist.
|
1193
1193
|
If 'best' then the model with the highest validation score is persisted (this is the model used for prediction by default).
|
1194
|
-
If 'all' then all models are persisted. Valid models are listed in this
|
1194
|
+
If 'all' then all models are persisted. Valid models are listed in this ``predictor`` by calling ``predictor.model_names()``.
|
1195
1195
|
with_ancestors : bool, default = True
|
1196
1196
|
If True, all ancestor models of the provided models will also be persisted.
|
1197
|
-
If False, ensemble models will not have the models they depend on persisted unless those models were specified in
|
1197
|
+
If False, ensemble models will not have the models they depend on persisted unless those models were specified in ``models``.
|
1198
1198
|
This will slow down inference as the ancestor models will still need to be loaded from disk for each predict call.
|
1199
1199
|
Only relevant for ensemble models.
|
1200
1200
|
|
@@ -1210,7 +1210,7 @@ class TimeSeriesPredictor:
|
|
1210
1210
|
disk every time they are asked to make predictions.
|
1211
1211
|
|
1212
1212
|
Note: Another way to reset the predictor and unpersist models is to reload the predictor from disk
|
1213
|
-
via
|
1213
|
+
via ``predictor = TimeSeriesPredictor.load(predictor.path)``.
|
1214
1214
|
|
1215
1215
|
Returns
|
1216
1216
|
-------
|
@@ -1257,27 +1257,27 @@ class TimeSeriesPredictor:
|
|
1257
1257
|
The names and dtypes of columns and static features in ``data`` must match the ``train_data`` used to train
|
1258
1258
|
the predictor.
|
1259
1259
|
|
1260
|
-
If provided data is a
|
1261
|
-
If a
|
1260
|
+
If provided data is a ``pandas.DataFrame``, AutoGluon will attempt to convert it to a ``TimeSeriesDataFrame``.
|
1261
|
+
If a ``str`` or a ``Path`` is provided, AutoGluon will attempt to load this file.
|
1262
1262
|
cutoff : int, optional
|
1263
1263
|
A *negative* integer less than or equal to ``-1 * prediction_length`` denoting the time step in ``data``
|
1264
1264
|
where the forecast evaluation starts, i.e., time series are evaluated from the ``-cutoff``-th to the
|
1265
1265
|
``-cutoff + prediction_length``-th time step. Defaults to ``-1 * prediction_length``, using the last
|
1266
1266
|
``prediction_length`` time steps of each time series for evaluation.
|
1267
1267
|
extra_info : bool, default = False
|
1268
|
-
If True, the leaderboard will contain an additional column
|
1269
|
-
by each model during training. An empty dictionary
|
1268
|
+
If True, the leaderboard will contain an additional column ``hyperparameters`` with the hyperparameters used
|
1269
|
+
by each model during training. An empty dictionary ``{}`` means that the model was trained with default
|
1270
1270
|
hyperparameters.
|
1271
1271
|
extra_metrics : List[Union[str, TimeSeriesScorer]], optional
|
1272
1272
|
A list of metrics to calculate scores for and include in the output DataFrame.
|
1273
1273
|
|
1274
|
-
Only valid when
|
1275
|
-
calculate the
|
1274
|
+
Only valid when ``data`` is specified. The scores refer to the scores on ``data`` (same data as used to
|
1275
|
+
calculate the ``score_test`` column).
|
1276
1276
|
|
1277
|
-
This list can contain any values which would also be valid for
|
1277
|
+
This list can contain any values which would also be valid for ``eval_metric`` when creating a :class:`~autogluon.timeseries.TimeSeriesPredictor`.
|
1278
1278
|
|
1279
|
-
For each provided
|
1280
|
-
the value of the metric computed on
|
1279
|
+
For each provided ``metric``, a column with name ``str(metric)`` will be added to the leaderboard, containing
|
1280
|
+
the value of the metric computed on ``data``.
|
1281
1281
|
display : bool, default = False
|
1282
1282
|
If True, the leaderboard DataFrame will be printed.
|
1283
1283
|
use_cache : bool, default = True
|
@@ -1315,7 +1315,7 @@ class TimeSeriesPredictor:
|
|
1315
1315
|
return leaderboard
|
1316
1316
|
|
1317
1317
|
def make_future_data_frame(self, data: Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]) -> pd.DataFrame:
|
1318
|
-
"""Generate a dataframe with the
|
1318
|
+
"""Generate a dataframe with the ``item_id`` and ``timestamp`` values corresponding to the forecast horizon.
|
1319
1319
|
|
1320
1320
|
Parameters
|
1321
1321
|
----------
|
@@ -1325,8 +1325,8 @@ class TimeSeriesPredictor:
|
|
1325
1325
|
Returns
|
1326
1326
|
-------
|
1327
1327
|
forecast_horizon : pd.DataFrame
|
1328
|
-
Data frame with columns
|
1329
|
-
in
|
1328
|
+
Data frame with columns ``item_id`` and ``timestamp`` corresponding to the forecast horizon. For each item ID
|
1329
|
+
in ``data``, ``forecast_horizon`` will contain the timestamps for the next ``prediction_length`` time steps,
|
1330
1330
|
following the end of each series in the input data.
|
1331
1331
|
|
1332
1332
|
Examples
|
@@ -1547,8 +1547,8 @@ class TimeSeriesPredictor:
|
|
1547
1547
|
Name of the column in ``predictions`` that will be plotted as the point forecast. Defaults to ``"0.5"``,
|
1548
1548
|
if this column is present in ``predictions``, otherwise ``"mean"``.
|
1549
1549
|
matplotlib_rc_params : dict, optional
|
1550
|
-
Dictionary describing the plot style that will be passed to
|
1551
|
-
See
|
1550
|
+
Dictionary describing the plot style that will be passed to `matplotlib.pyplot.rc_context <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.rc_context.html>`_.
|
1551
|
+
See `matplotlib documentation <https://matplotlib.org/stable/users/explain/customizing.html#the-default-matplotlibrc-file>`_ for the list of available options.
|
1552
1552
|
"""
|
1553
1553
|
import matplotlib.pyplot as plt
|
1554
1554
|
|
@@ -41,17 +41,17 @@ class GlobalCovariateRegressor(CovariateRegressor):
|
|
41
41
|
Parameters
|
42
42
|
----------
|
43
43
|
model_name : str
|
44
|
-
Name of the tabular regression model. See
|
44
|
+
Name of the tabular regression model. See ``autogluon.tabular.registry.ag_model_registry`` or
|
45
45
|
`the documentation <https://auto.gluon.ai/stable/api/autogluon.tabular.models.html>`_ for the list of available
|
46
46
|
tabular models.
|
47
47
|
model_hyperparameters : dict or None
|
48
48
|
Hyperparameters passed to the tabular regression model.
|
49
49
|
eval_metric : str
|
50
|
-
Metric provided as
|
50
|
+
Metric provided as ``eval_metric`` to the tabular regression model. Must be compatible with `problem_type="regression"`.
|
51
51
|
refit_during_predict : bool
|
52
|
-
If True, the model will be re-trained every time
|
53
|
-
trained the first time that
|
54
|
-
|
52
|
+
If True, the model will be re-trained every time ``fit_transform`` is called. If False, the model will only be
|
53
|
+
trained the first time that ``fit_transform`` is called, and future calls to ``fit_transform`` will only perform a
|
54
|
+
``transform``.
|
55
55
|
max_num_samples : int or None
|
56
56
|
If not None, training dataset passed to regression model will contain at most this many rows.
|
57
57
|
covariate_metadata : CovariateMetadata
|
@@ -65,7 +65,7 @@ class GlobalCovariateRegressor(CovariateRegressor):
|
|
65
65
|
The fraction of the time_limit that will be reserved for model training. The remainder (1 - fit_time_fraction)
|
66
66
|
will be reserved for prediction.
|
67
67
|
|
68
|
-
If the estimated prediction time exceeds
|
68
|
+
If the estimated prediction time exceeds ``(1 - fit_time_fraction) * time_limit``, the regressor will be disabled.
|
69
69
|
include_static_features: bool
|
70
70
|
If True, static features will be included as features for the regressor.
|
71
71
|
include_item_id: bool
|
@@ -239,7 +239,9 @@ def get_covariate_regressor(
|
|
239
239
|
if covariate_regressor is None:
|
240
240
|
return None
|
241
241
|
elif len(covariate_metadata.known_covariates + covariate_metadata.static_features) == 0:
|
242
|
-
logger.info(
|
242
|
+
logger.info(
|
243
|
+
"\tSkipping covariate_regressor since the dataset contains no known_covariates or static_features."
|
244
|
+
)
|
243
245
|
return None
|
244
246
|
else:
|
245
247
|
if isinstance(covariate_regressor, str):
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250718
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.2b20250718
|
59
|
+
Requires-Dist: autogluon.common==1.3.2b20250718
|
60
|
+
Requires-Dist: autogluon.features==1.3.2b20250718
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250718
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: tests
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
@@ -1,20 +1,20 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.2b20250718-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
5
|
-
autogluon/timeseries/predictor.py,sha256=
|
6
|
-
autogluon/timeseries/regressor.py,sha256=
|
5
|
+
autogluon/timeseries/predictor.py,sha256=s3zVRKEXdmbIM2tS8S_DabmNOnVisdiJNL9VN3WSAJs,88273
|
6
|
+
autogluon/timeseries/regressor.py,sha256=_VTr-Lff58gobYIhOxjwzkfPe2fJdTvgQdjOIR6VzM0,12043
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=t7hPQFF0BzYTBfD-vM9hoER3q-C5x0pjSWoVO1dcT0w,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
13
|
-
autogluon/timeseries/dataset/ts_dataframe.py,sha256=
|
13
|
+
autogluon/timeseries/dataset/ts_dataframe.py,sha256=57PTFaxcOHAe85-SFD1RbAZ3jKMMKgiBGffhEh7H6BY,51233
|
14
14
|
autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
|
15
|
-
autogluon/timeseries/metrics/abstract.py,sha256=
|
16
|
-
autogluon/timeseries/metrics/point.py,sha256=
|
17
|
-
autogluon/timeseries/metrics/quantile.py,sha256=
|
15
|
+
autogluon/timeseries/metrics/abstract.py,sha256=Nu2WKMRmJT-oIpNHMOa5Ulw5WlOKA8jB-rm6Bnf2I2o,11864
|
16
|
+
autogluon/timeseries/metrics/point.py,sha256=sS__n_Em7m4CUaBu3PNWQ_dHw1YCOHbEyC15fhytFL8,18308
|
17
|
+
autogluon/timeseries/metrics/quantile.py,sha256=x0cq44fXRoMiuI4BVQ7mpWk1YgrK4OwLTlJAhCHQ7Xg,4634
|
18
18
|
autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
|
20
20
|
autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
|
@@ -23,8 +23,8 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYe
|
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
27
|
-
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=l10XXajPzUdPGpqC2fSL1jxaXRzQ6b6IBmLLPq59qQY,37669
|
27
|
+
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=9jOpk1y709od1XvOqLDxz8kVSeCclnlsGwqaZYsxfn0,23065
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
29
29
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
30
30
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
@@ -41,12 +41,12 @@ autogluon/timeseries/models/ensemble/greedy.py,sha256=s4gz5Qqrf34Wtu6E1JtyK3EvIy
|
|
41
41
|
autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
|
42
42
|
autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
|
43
43
|
autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
|
44
|
-
autogluon/timeseries/models/gluonts/models.py,sha256=
|
44
|
+
autogluon/timeseries/models/gluonts/models.py,sha256=XaIsPqeDIh-CL8Sw59Koo6_UrVCJFE0jduk3IKXQFuM,25728
|
45
45
|
autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
|
46
46
|
autogluon/timeseries/models/local/abstract_local_model.py,sha256=BVCMC0wNMwrrDfZy_SQJeEajPmYBAyUlMu4qrTkWJBQ,11535
|
47
47
|
autogluon/timeseries/models/local/naive.py,sha256=TAiQLt3fGCQoZKjBzmlhosV2XVEZ1urtPHDhM7Mf2i8,7408
|
48
48
|
autogluon/timeseries/models/local/npts.py,sha256=I3y5g-718TVVhAbotfJ74wvLfLQ6HfLwA_ivrEWY7Qc,4182
|
49
|
-
autogluon/timeseries/models/local/statsforecast.py,sha256=
|
49
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=JzjEFVa1piUAo1S4Rgo5651WRyBkJivZsmgnFZ1Efnw,33050
|
50
50
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
51
51
|
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
|
52
52
|
autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
|
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
61
61
|
autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
|
62
62
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
63
63
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
71
|
-
autogluon.timeseries-1.3.
|
64
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
65
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/METADATA,sha256=5NgQMqK9-BQHKMYmm6aCcv1AyWOCjLGwnqtnxxxHsWE,12445
|
66
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
67
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
68
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
70
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
71
|
+
autogluon.timeseries-1.3.2b20250718.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|