autogluon.timeseries 1.3.2b20250711__py3-none-any.whl → 1.3.2b20250713__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +13 -8
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/METADATA +6 -6
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/RECORD +11 -11
- /autogluon.timeseries-1.3.2b20250711-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250713-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250711.dist-info → autogluon.timeseries-1.3.2b20250713.dist-info}/zip-safe +0 -0
@@ -11,6 +11,7 @@ from sklearn.base import BaseEstimator
|
|
11
11
|
|
12
12
|
import autogluon.core as ag
|
13
13
|
from autogluon.core.models import AbstractModel as AbstractTabularModel
|
14
|
+
from autogluon.features import AutoMLPipelineFeatureGenerator
|
14
15
|
from autogluon.tabular.registry import ag_model_registry
|
15
16
|
from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
|
16
17
|
from autogluon.timeseries.metrics.abstract import TimeSeriesScorer
|
@@ -35,14 +36,18 @@ class TabularModel(BaseEstimator):
|
|
35
36
|
def __init__(self, model_class: Type[AbstractTabularModel], model_kwargs: Optional[dict] = None):
|
36
37
|
self.model_class = model_class
|
37
38
|
self.model_kwargs = {} if model_kwargs is None else model_kwargs
|
39
|
+
self.feature_pipeline = AutoMLPipelineFeatureGenerator()
|
38
40
|
|
39
|
-
def fit(self,
|
41
|
+
def fit(self, X: pd.DataFrame, y: pd.Series, X_val: pd.DataFrame, y_val: pd.Series, **kwargs):
|
40
42
|
self.model = self.model_class(**self.model_kwargs)
|
41
|
-
self.
|
43
|
+
X = self.feature_pipeline.fit_transform(X=X)
|
44
|
+
X_val = self.feature_pipeline.transform(X=X_val)
|
45
|
+
self.model.fit(X=X, y=y, X_val=X_val, y_val=y_val, **kwargs)
|
42
46
|
return self
|
43
47
|
|
44
|
-
def predict(self,
|
45
|
-
|
48
|
+
def predict(self, X: pd.DataFrame, **kwargs):
|
49
|
+
X = self.feature_pipeline.transform(X=X)
|
50
|
+
return self.model.predict(X=X, **kwargs)
|
46
51
|
|
47
52
|
def get_params(self, deep=True):
|
48
53
|
params = {"model_class": self.model_class, "model_kwargs": self.model_kwargs}
|
@@ -346,7 +351,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
346
351
|
max_num_samples=model_params["max_num_samples"],
|
347
352
|
)
|
348
353
|
|
349
|
-
with set_loggers_level(regex=r"^autogluon
|
354
|
+
with set_loggers_level(regex=r"^autogluon\.(tabular|features).*", level=logging.ERROR):
|
350
355
|
tabular_model = self._create_tabular_model(
|
351
356
|
model_name=model_params["model_name"], model_hyperparameters=model_params["model_hyperparameters"]
|
352
357
|
)
|
@@ -364,12 +369,12 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
364
369
|
|
365
370
|
self._save_residuals_std(val_df)
|
366
371
|
|
367
|
-
def get_tabular_model(self) ->
|
368
|
-
"""Get the
|
372
|
+
def get_tabular_model(self) -> TabularModel:
|
373
|
+
"""Get the underlying tabular regression model."""
|
369
374
|
assert "mean" in self._mlf.models_, "Call `fit` before calling `get_tabular_model`"
|
370
375
|
mean_estimator = self._mlf.models_["mean"]
|
371
376
|
assert isinstance(mean_estimator, TabularModel)
|
372
|
-
return mean_estimator
|
377
|
+
return mean_estimator
|
373
378
|
|
374
379
|
def _save_residuals_std(self, val_df: pd.DataFrame) -> None:
|
375
380
|
"""Compute standard deviation of residuals for each item using the validation set.
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250713
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -36,7 +36,7 @@ Requires-Python: >=3.9, <3.13
|
|
36
36
|
Description-Content-Type: text/markdown
|
37
37
|
License-File: ../LICENSE
|
38
38
|
License-File: ../NOTICE
|
39
|
-
Requires-Dist: joblib<
|
39
|
+
Requires-Dist: joblib<1.7,>=1.2
|
40
40
|
Requires-Dist: numpy<2.4.0,>=1.25.0
|
41
41
|
Requires-Dist: scipy<1.17,>=1.5.4
|
42
42
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.2b20250713
|
59
|
+
Requires-Dist: autogluon.common==1.3.2b20250713
|
60
|
+
Requires-Dist: autogluon.features==1.3.2b20250713
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250713
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: tests
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.2b20250713-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zU
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=G0zecniv85wr8EXlXsbiqpKYHE5KeNALHRzPp_hO5qs,12001
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=pJQ53CceiSaKzY0L4npBwcJCBhY5tCP4kaMC3X1muUQ,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -23,7 +23,7 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYe
|
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=CBQh23Li__Gmpsv1e5ucMjeBtLFcm2CJbpgqXVNOTNY,37614
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=qCC8ed4pqm6yoW743WJ2z1Nh6WV8-Z8EVqRwX9Lz6eE,20580
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
29
29
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
61
61
|
autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
|
62
62
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
63
63
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
71
|
-
autogluon.timeseries-1.3.
|
64
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
65
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/METADATA,sha256=GI3UpyoaOAJGcjXpStjFyIknY6yz7xWRANgpw7YnWwM,12445
|
66
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
67
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
68
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
70
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
71
|
+
autogluon.timeseries-1.3.2b20250713.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|