autogluon.timeseries 1.3.2b20250711__py3-none-any.whl → 1.3.2b20250712__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -11,6 +11,7 @@ from sklearn.base import BaseEstimator
11
11
 
12
12
  import autogluon.core as ag
13
13
  from autogluon.core.models import AbstractModel as AbstractTabularModel
14
+ from autogluon.features import AutoMLPipelineFeatureGenerator
14
15
  from autogluon.tabular.registry import ag_model_registry
15
16
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
16
17
  from autogluon.timeseries.metrics.abstract import TimeSeriesScorer
@@ -35,14 +36,18 @@ class TabularModel(BaseEstimator):
35
36
  def __init__(self, model_class: Type[AbstractTabularModel], model_kwargs: Optional[dict] = None):
36
37
  self.model_class = model_class
37
38
  self.model_kwargs = {} if model_kwargs is None else model_kwargs
39
+ self.feature_pipeline = AutoMLPipelineFeatureGenerator()
38
40
 
39
- def fit(self, *args, **kwargs):
41
+ def fit(self, X: pd.DataFrame, y: pd.Series, X_val: pd.DataFrame, y_val: pd.Series, **kwargs):
40
42
  self.model = self.model_class(**self.model_kwargs)
41
- self.model.fit(*args, **kwargs)
43
+ X = self.feature_pipeline.fit_transform(X=X)
44
+ X_val = self.feature_pipeline.transform(X=X_val)
45
+ self.model.fit(X=X, y=y, X_val=X_val, y_val=y_val, **kwargs)
42
46
  return self
43
47
 
44
- def predict(self, *args, **kwargs):
45
- return self.model.predict(*args, **kwargs)
48
+ def predict(self, X: pd.DataFrame, **kwargs):
49
+ X = self.feature_pipeline.transform(X=X)
50
+ return self.model.predict(X=X, **kwargs)
46
51
 
47
52
  def get_params(self, deep=True):
48
53
  params = {"model_class": self.model_class, "model_kwargs": self.model_kwargs}
@@ -346,7 +351,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
346
351
  max_num_samples=model_params["max_num_samples"],
347
352
  )
348
353
 
349
- with set_loggers_level(regex=r"^autogluon.tabular.*", level=logging.ERROR):
354
+ with set_loggers_level(regex=r"^autogluon\.(tabular|features).*", level=logging.ERROR):
350
355
  tabular_model = self._create_tabular_model(
351
356
  model_name=model_params["model_name"], model_hyperparameters=model_params["model_hyperparameters"]
352
357
  )
@@ -364,12 +369,12 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
364
369
 
365
370
  self._save_residuals_std(val_df)
366
371
 
367
- def get_tabular_model(self) -> AbstractTabularModel:
368
- """Get the unerlyin tabular regression model."""
372
+ def get_tabular_model(self) -> TabularModel:
373
+ """Get the underlying tabular regression model."""
369
374
  assert "mean" in self._mlf.models_, "Call `fit` before calling `get_tabular_model`"
370
375
  mean_estimator = self._mlf.models_["mean"]
371
376
  assert isinstance(mean_estimator, TabularModel)
372
- return mean_estimator.model
377
+ return mean_estimator
373
378
 
374
379
  def _save_residuals_std(self, val_df: pd.DataFrame) -> None:
375
380
  """Compute standard deviation of residuals for each item using the validation set.
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250711"
3
+ __version__ = "1.3.2b20250712"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250711
3
+ Version: 1.3.2b20250712
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250711
59
- Requires-Dist: autogluon.common==1.3.2b20250711
60
- Requires-Dist: autogluon.features==1.3.2b20250711
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250711
58
+ Requires-Dist: autogluon.core[raytune]==1.3.2b20250712
59
+ Requires-Dist: autogluon.common==1.3.2b20250712
60
+ Requires-Dist: autogluon.features==1.3.2b20250712
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250712
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.3.2b20250711-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.2b20250712-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zU
6
6
  autogluon/timeseries/regressor.py,sha256=G0zecniv85wr8EXlXsbiqpKYHE5KeNALHRzPp_hO5qs,12001
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=v0iakvttW3DdrV3QLVZS9POR34hhZdNc3hc0eVzEc6k,91
9
+ autogluon/timeseries/version.py,sha256=C6OW_vajErF7r9El7B0X_XkhCzzEn70hhuGbhroLKSU,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -23,7 +23,7 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYe
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=-81pbdlvGGtEzBpBJbRt-5HgOonpRWdw6DpiGpoKNkE,37228
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=CBQh23Li__Gmpsv1e5ucMjeBtLFcm2CJbpgqXVNOTNY,37614
27
27
  autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=qCC8ed4pqm6yoW743WJ2z1Nh6WV8-Z8EVqRwX9Lz6eE,20580
28
28
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
29
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
61
61
  autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
62
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
63
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.3.2b20250711.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.3.2b20250711.dist-info/METADATA,sha256=IBPw5YQfeVFkFZJGhm1AO_8TdIxx8D0-AVgG6a3T9c4,12443
66
- autogluon.timeseries-1.3.2b20250711.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.3.2b20250711.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.3.2b20250711.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250711.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.3.2b20250711.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.3.2b20250711.dist-info/RECORD,,
64
+ autogluon.timeseries-1.3.2b20250712.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
+ autogluon.timeseries-1.3.2b20250712.dist-info/METADATA,sha256=IgR6RZQbUF8j9rMAow5LpeHS1R0EdXQm62mEf1SXkV8,12443
66
+ autogluon.timeseries-1.3.2b20250712.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
+ autogluon.timeseries-1.3.2b20250712.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
+ autogluon.timeseries-1.3.2b20250712.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.2b20250712.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
+ autogluon.timeseries-1.3.2b20250712.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
+ autogluon.timeseries-1.3.2b20250712.dist-info/RECORD,,