autogluon.timeseries 1.3.2b20250710__py3-none-any.whl → 1.3.2b20250711__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +1 -1
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +4 -1
- autogluon/timeseries/regressor.py +1 -0
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/RECORD +13 -13
- /autogluon.timeseries-1.3.2b20250710-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250711-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250710.dist-info → autogluon.timeseries-1.3.2b20250711.dist-info}/zip-safe +0 -0
@@ -482,7 +482,7 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
|
|
482
482
|
self.covariate_regressor.fit(
|
483
483
|
train_data,
|
484
484
|
time_limit=covariate_regressor_time_limit,
|
485
|
-
verbosity=verbosity,
|
485
|
+
verbosity=verbosity - 1,
|
486
486
|
)
|
487
487
|
|
488
488
|
if self._get_tags()["can_use_train_data"]:
|
@@ -356,6 +356,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
356
356
|
X_val=val_df.drop(columns=[MLF_TARGET, MLF_ITEMID]),
|
357
357
|
y_val=val_df[MLF_TARGET],
|
358
358
|
time_limit=(None if time_limit is None else time_limit - (time.time() - fit_start_time)),
|
359
|
+
verbosity=verbosity - 1,
|
359
360
|
)
|
360
361
|
|
361
362
|
# We directly insert the trained model into models_ since calling _mlf.fit_models does not support X_val, y_val
|
@@ -531,7 +532,9 @@ class DirectTabularModel(AbstractMLForecastModel):
|
|
531
532
|
"""Apply a mask that mimics the situation at prediction time when target/covariates are unknown during the
|
532
533
|
forecast horizon.
|
533
534
|
"""
|
534
|
-
|
535
|
+
# Fix seed to make the model deterministic
|
536
|
+
rng = np.random.default_rng(seed=123)
|
537
|
+
num_hidden = rng.integers(0, self.prediction_length, size=len(df))
|
535
538
|
lag_cols = [f"lag{lag}" for lag in self._target_lags]
|
536
539
|
mask = num_hidden[:, None] < self._target_lags[None] # shape [len(num_hidden), len(_target_lags)]
|
537
540
|
# use df.loc[:, lag_cols] instead of df[lag_cols] to avoid SettingWithCopyWarning
|
@@ -146,6 +146,7 @@ class GlobalCovariateRegressor(CovariateRegressor):
|
|
146
146
|
# Has no effect since the model won't be saved to disk.
|
147
147
|
# We provide path to avoid https://github.com/autogluon/autogluon/issues/4832
|
148
148
|
path="",
|
149
|
+
name=self.model_type.__name__,
|
149
150
|
)
|
150
151
|
if time_limit is not None:
|
151
152
|
time_limit_fit = self.fit_time_fraction * (time_limit - (time.monotonic() - start_time))
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250711
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.2b20250711
|
59
|
+
Requires-Dist: autogluon.common==1.3.2b20250711
|
60
|
+
Requires-Dist: autogluon.features==1.3.2b20250711
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250711
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: tests
|
64
64
|
Requires-Dist: pytest; extra == "tests"
|
@@ -1,12 +1,12 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.2b20250711-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
5
5
|
autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zUZoy4,88168
|
6
|
-
autogluon/timeseries/regressor.py,sha256=
|
6
|
+
autogluon/timeseries/regressor.py,sha256=G0zecniv85wr8EXlXsbiqpKYHE5KeNALHRzPp_hO5qs,12001
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=v0iakvttW3DdrV3QLVZS9POR34hhZdNc3hc0eVzEc6k,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -19,11 +19,11 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
|
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
|
20
20
|
autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
|
21
21
|
autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
|
22
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
22
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYeLT9KsUAHlWlCH9WVw7I_L65m8CMKZBMN7LIU,33112
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=-81pbdlvGGtEzBpBJbRt-5HgOonpRWdw6DpiGpoKNkE,37228
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=qCC8ed4pqm6yoW743WJ2z1Nh6WV8-Z8EVqRwX9Lz6eE,20580
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
29
29
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
61
61
|
autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
|
62
62
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
63
63
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
71
|
-
autogluon.timeseries-1.3.
|
64
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
65
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/METADATA,sha256=IBPw5YQfeVFkFZJGhm1AO_8TdIxx8D0-AVgG6a3T9c4,12443
|
66
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
67
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
68
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
70
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
71
|
+
autogluon.timeseries-1.3.2b20250711.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|