autogluon.timeseries 1.3.2b20250710__py3-none-any.whl → 1.3.2b20250711__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -482,7 +482,7 @@ class AbstractTimeSeriesModel(TimeSeriesModelBase, TimeSeriesTunable, ABC):
482
482
  self.covariate_regressor.fit(
483
483
  train_data,
484
484
  time_limit=covariate_regressor_time_limit,
485
- verbosity=verbosity,
485
+ verbosity=verbosity - 1,
486
486
  )
487
487
 
488
488
  if self._get_tags()["can_use_train_data"]:
@@ -356,6 +356,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
356
356
  X_val=val_df.drop(columns=[MLF_TARGET, MLF_ITEMID]),
357
357
  y_val=val_df[MLF_TARGET],
358
358
  time_limit=(None if time_limit is None else time_limit - (time.time() - fit_start_time)),
359
+ verbosity=verbosity - 1,
359
360
  )
360
361
 
361
362
  # We directly insert the trained model into models_ since calling _mlf.fit_models does not support X_val, y_val
@@ -531,7 +532,9 @@ class DirectTabularModel(AbstractMLForecastModel):
531
532
  """Apply a mask that mimics the situation at prediction time when target/covariates are unknown during the
532
533
  forecast horizon.
533
534
  """
534
- num_hidden = np.random.randint(0, self.prediction_length, size=len(df))
535
+ # Fix seed to make the model deterministic
536
+ rng = np.random.default_rng(seed=123)
537
+ num_hidden = rng.integers(0, self.prediction_length, size=len(df))
535
538
  lag_cols = [f"lag{lag}" for lag in self._target_lags]
536
539
  mask = num_hidden[:, None] < self._target_lags[None] # shape [len(num_hidden), len(_target_lags)]
537
540
  # use df.loc[:, lag_cols] instead of df[lag_cols] to avoid SettingWithCopyWarning
@@ -146,6 +146,7 @@ class GlobalCovariateRegressor(CovariateRegressor):
146
146
  # Has no effect since the model won't be saved to disk.
147
147
  # We provide path to avoid https://github.com/autogluon/autogluon/issues/4832
148
148
  path="",
149
+ name=self.model_type.__name__,
149
150
  )
150
151
  if time_limit is not None:
151
152
  time_limit_fit = self.fit_time_fraction * (time_limit - (time.monotonic() - start_time))
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250710"
3
+ __version__ = "1.3.2b20250711"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.2b20250710
3
+ Version: 1.3.2b20250711
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250710
59
- Requires-Dist: autogluon.common==1.3.2b20250710
60
- Requires-Dist: autogluon.features==1.3.2b20250710
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250710
58
+ Requires-Dist: autogluon.core[raytune]==1.3.2b20250711
59
+ Requires-Dist: autogluon.common==1.3.2b20250711
60
+ Requires-Dist: autogluon.features==1.3.2b20250711
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250711
62
62
  Provides-Extra: all
63
63
  Provides-Extra: tests
64
64
  Requires-Dist: pytest; extra == "tests"
@@ -1,12 +1,12 @@
1
- autogluon.timeseries-1.3.2b20250710-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.2b20250711-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
5
  autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zUZoy4,88168
6
- autogluon/timeseries/regressor.py,sha256=oeShL68b50cX7WASj7YRiYaJ012QudUUTyZFBpMZMqU,11958
6
+ autogluon/timeseries/regressor.py,sha256=G0zecniv85wr8EXlXsbiqpKYHE5KeNALHRzPp_hO5qs,12001
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=-xdGZ4v8OTA3AzMjBJ4CwGYhmKBRsY0Q-dm6YioFOmc,57977
9
- autogluon/timeseries/version.py,sha256=7DTsh87cIM0xS67uB9g3eKGKiM6QqP2Gr5W3n-lwcfU,91
9
+ autogluon/timeseries/version.py,sha256=v0iakvttW3DdrV3QLVZS9POR34hhZdNc3hc0eVzEc6k,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -19,11 +19,11 @@ autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhx
19
19
  autogluon/timeseries/models/__init__.py,sha256=nx61eXLCxWIb-eJXpYgCw3C7naNklh_FAaKImb8EdvI,1237
20
20
  autogluon/timeseries/models/presets.py,sha256=ejVCs1Uv6EwVn55uKYyb4ju0kFuuwlOaO0yVmwYbMgI,12314
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=Htfkjjc3vo92RvyM8rIlQ0PLWt3jcrCKZES07UvCMV0,146
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=apt1AsGQF9lKrdSShIG3KsqNsZ7oEwUGd9mjhMN9S0M,33108
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=cxAZoYeLT9KsUAHlWlCH9WVw7I_L65m8CMKZBMN7LIU,33112
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=E5fZsdFPgVdyCVyj5bGmn_lQFlCMn2NvuRLBMcCFvhM,205
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=3yaPAqnqTv5kxkYg_JmQR7Q5yiaAAGKdaMFtN_GC-Yk,37095
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=-81pbdlvGGtEzBpBJbRt-5HgOonpRWdw6DpiGpoKNkE,37228
27
27
  autogluon/timeseries/models/autogluon_tabular/per_step.py,sha256=qCC8ed4pqm6yoW743WJ2z1Nh6WV8-Z8EVqRwX9Lz6eE,20580
28
28
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
29
29
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
@@ -61,11 +61,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
61
61
  autogluon/timeseries/utils/datetime/lags.py,sha256=dpndFOV-d-AqCTwKeQ5Dz-AfCJTeI27bxDC13QzY4y8,6003
62
62
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
63
63
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
64
- autogluon.timeseries-1.3.2b20250710.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
- autogluon.timeseries-1.3.2b20250710.dist-info/METADATA,sha256=Y3kzbY2t9xUR5bnvnlZ2go5LioftRxA8mrmhuUFfdU4,12443
66
- autogluon.timeseries-1.3.2b20250710.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
- autogluon.timeseries-1.3.2b20250710.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
- autogluon.timeseries-1.3.2b20250710.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.2b20250710.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
- autogluon.timeseries-1.3.2b20250710.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
- autogluon.timeseries-1.3.2b20250710.dist-info/RECORD,,
64
+ autogluon.timeseries-1.3.2b20250711.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
65
+ autogluon.timeseries-1.3.2b20250711.dist-info/METADATA,sha256=IBPw5YQfeVFkFZJGhm1AO_8TdIxx8D0-AVgG6a3T9c4,12443
66
+ autogluon.timeseries-1.3.2b20250711.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
67
+ autogluon.timeseries-1.3.2b20250711.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
68
+ autogluon.timeseries-1.3.2b20250711.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.2b20250711.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
70
+ autogluon.timeseries-1.3.2b20250711.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
71
+ autogluon.timeseries-1.3.2b20250711.dist-info/RECORD,,