autogluon.timeseries 1.3.2b20250625__py3-none-any.whl → 1.3.2b20250626__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/chronos/pipeline/utils.py +1 -1
- autogluon/timeseries/models/gluonts/__init__.py +1 -1
- autogluon/timeseries/models/gluonts/{abstract_gluonts.py → abstract.py} +4 -104
- autogluon/timeseries/models/gluonts/dataset.py +109 -0
- autogluon/timeseries/models/gluonts/{torch/models.py → models.py} +2 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/RECORD +15 -15
- autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
- /autogluon.timeseries-1.3.2b20250625-py3.9-nspkg.pth → /autogluon.timeseries-1.3.2b20250626-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.2b20250625.dist-info → autogluon.timeseries-1.3.2b20250626.dist-info}/zip-safe +0 -0
@@ -16,7 +16,7 @@ from transformers import TrainerCallback
|
|
16
16
|
from autogluon.common.loaders.load_s3 import download, list_bucket_prefix_suffix_contains_s3
|
17
17
|
from autogluon.core.utils.exceptions import TimeLimitExceeded
|
18
18
|
from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame
|
19
|
-
from autogluon.timeseries.models.gluonts.
|
19
|
+
from autogluon.timeseries.models.gluonts.dataset import SimpleGluonTSDataset
|
20
20
|
|
21
21
|
if TYPE_CHECKING:
|
22
22
|
# TODO: fix the underlying reason for this circular import, the pipeline should handle tokenization
|
@@ -3,7 +3,7 @@ import os
|
|
3
3
|
import shutil
|
4
4
|
from datetime import timedelta
|
5
5
|
from pathlib import Path
|
6
|
-
from typing import TYPE_CHECKING, Any, Callable, Dict,
|
6
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Type, Union, cast, overload
|
7
7
|
|
8
8
|
import gluonts
|
9
9
|
import gluonts.core.settings
|
@@ -11,7 +11,6 @@ import numpy as np
|
|
11
11
|
import pandas as pd
|
12
12
|
from gluonts.core.component import from_hyperparameters
|
13
13
|
from gluonts.dataset.common import Dataset as GluonTSDataset
|
14
|
-
from gluonts.dataset.field_names import FieldName
|
15
14
|
from gluonts.env import env as gluonts_env
|
16
15
|
from gluonts.model.estimator import Estimator as GluonTSEstimator
|
17
16
|
from gluonts.model.forecast import Forecast, QuantileForecast, SampleForecast
|
@@ -22,14 +21,15 @@ from autogluon.core.hpo.constants import RAY_BACKEND
|
|
22
21
|
from autogluon.tabular.models.tabular_nn.utils.categorical_encoders import (
|
23
22
|
OneHotMergeRaresHandleUnknownEncoder as OneHotEncoder,
|
24
23
|
)
|
25
|
-
from autogluon.timeseries.dataset.ts_dataframe import ITEMID,
|
24
|
+
from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TimeSeriesDataFrame
|
26
25
|
from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
|
27
|
-
from autogluon.timeseries.utils.datetime import norm_freq_str
|
28
26
|
from autogluon.timeseries.utils.warning_filters import disable_root_logger, warning_filter
|
29
27
|
|
30
28
|
if TYPE_CHECKING:
|
31
29
|
from gluonts.torch.model.forecast import DistributionForecast
|
32
30
|
|
31
|
+
from .dataset import SimpleGluonTSDataset
|
32
|
+
|
33
33
|
# NOTE: We avoid imports for torch and lightning.pytorch at the top level and hide them inside class methods.
|
34
34
|
# This is done to skip these imports during multiprocessing (which may cause bugs)
|
35
35
|
|
@@ -37,106 +37,6 @@ logger = logging.getLogger(__name__)
|
|
37
37
|
gts_logger = logging.getLogger(gluonts.__name__)
|
38
38
|
|
39
39
|
|
40
|
-
class SimpleGluonTSDataset(GluonTSDataset):
|
41
|
-
"""Wrapper for TimeSeriesDataFrame that is compatible with the GluonTS Dataset API."""
|
42
|
-
|
43
|
-
def __init__(
|
44
|
-
self,
|
45
|
-
target_df: TimeSeriesDataFrame,
|
46
|
-
freq: str,
|
47
|
-
target_column: str = "target",
|
48
|
-
feat_static_cat: Optional[np.ndarray] = None,
|
49
|
-
feat_static_real: Optional[np.ndarray] = None,
|
50
|
-
feat_dynamic_cat: Optional[np.ndarray] = None,
|
51
|
-
feat_dynamic_real: Optional[np.ndarray] = None,
|
52
|
-
past_feat_dynamic_cat: Optional[np.ndarray] = None,
|
53
|
-
past_feat_dynamic_real: Optional[np.ndarray] = None,
|
54
|
-
includes_future: bool = False,
|
55
|
-
prediction_length: Optional[int] = None,
|
56
|
-
):
|
57
|
-
assert target_df is not None
|
58
|
-
# Convert TimeSeriesDataFrame to pd.Series for faster processing
|
59
|
-
self.target_array = target_df[target_column].to_numpy(np.float32)
|
60
|
-
self.feat_static_cat = self._astype(feat_static_cat, dtype=np.int64)
|
61
|
-
self.feat_static_real = self._astype(feat_static_real, dtype=np.float32)
|
62
|
-
self.feat_dynamic_cat = self._astype(feat_dynamic_cat, dtype=np.int64)
|
63
|
-
self.feat_dynamic_real = self._astype(feat_dynamic_real, dtype=np.float32)
|
64
|
-
self.past_feat_dynamic_cat = self._astype(past_feat_dynamic_cat, dtype=np.int64)
|
65
|
-
self.past_feat_dynamic_real = self._astype(past_feat_dynamic_real, dtype=np.float32)
|
66
|
-
self.freq = self._get_freq_for_period(freq)
|
67
|
-
|
68
|
-
# Necessary to compute indptr for known_covariates at prediction time
|
69
|
-
self.includes_future = includes_future
|
70
|
-
self.prediction_length = prediction_length
|
71
|
-
|
72
|
-
# Replace inefficient groupby ITEMID with indptr that stores start:end of each time series
|
73
|
-
self.item_ids = target_df.item_ids
|
74
|
-
self.indptr = target_df.get_indptr()
|
75
|
-
self.start_timestamps = target_df.index[self.indptr[:-1]].to_frame(index=False)[TIMESTAMP]
|
76
|
-
assert len(self.item_ids) == len(self.start_timestamps)
|
77
|
-
|
78
|
-
@staticmethod
|
79
|
-
def _astype(array: Optional[np.ndarray], dtype: Type[np.generic]) -> Optional[np.ndarray]:
|
80
|
-
if array is None:
|
81
|
-
return None
|
82
|
-
else:
|
83
|
-
return array.astype(dtype)
|
84
|
-
|
85
|
-
@staticmethod
|
86
|
-
def _get_freq_for_period(freq: str) -> str:
|
87
|
-
"""Convert freq to format compatible with pd.Period.
|
88
|
-
|
89
|
-
For example, ME freq must be converted to M when creating a pd.Period.
|
90
|
-
"""
|
91
|
-
offset = pd.tseries.frequencies.to_offset(freq)
|
92
|
-
assert offset is not None
|
93
|
-
freq_name = norm_freq_str(offset)
|
94
|
-
if freq_name == "SME":
|
95
|
-
# Replace unsupported frequency "SME" with "2W"
|
96
|
-
return "2W"
|
97
|
-
elif freq_name == "bh":
|
98
|
-
# Replace unsupported frequency "bh" with dummy value "Y"
|
99
|
-
return "Y"
|
100
|
-
else:
|
101
|
-
freq_name_for_period = {"YE": "Y", "QE": "Q", "ME": "M"}.get(freq_name, freq_name)
|
102
|
-
return f"{offset.n}{freq_name_for_period}"
|
103
|
-
|
104
|
-
def __len__(self):
|
105
|
-
return len(self.indptr) - 1 # noqa
|
106
|
-
|
107
|
-
def __iter__(self) -> Iterator[Dict[str, Any]]:
|
108
|
-
for j in range(len(self.indptr) - 1):
|
109
|
-
start_idx = self.indptr[j]
|
110
|
-
end_idx = self.indptr[j + 1]
|
111
|
-
# GluonTS expects item_id to be a string
|
112
|
-
ts = {
|
113
|
-
FieldName.ITEM_ID: str(self.item_ids[j]),
|
114
|
-
FieldName.START: pd.Period(self.start_timestamps.iloc[j], freq=self.freq),
|
115
|
-
FieldName.TARGET: self.target_array[start_idx:end_idx],
|
116
|
-
}
|
117
|
-
if self.feat_static_cat is not None:
|
118
|
-
ts[FieldName.FEAT_STATIC_CAT] = self.feat_static_cat[j]
|
119
|
-
if self.feat_static_real is not None:
|
120
|
-
ts[FieldName.FEAT_STATIC_REAL] = self.feat_static_real[j]
|
121
|
-
if self.past_feat_dynamic_cat is not None:
|
122
|
-
ts[FieldName.PAST_FEAT_DYNAMIC_CAT] = self.past_feat_dynamic_cat[start_idx:end_idx].T
|
123
|
-
if self.past_feat_dynamic_real is not None:
|
124
|
-
ts[FieldName.PAST_FEAT_DYNAMIC_REAL] = self.past_feat_dynamic_real[start_idx:end_idx].T
|
125
|
-
|
126
|
-
# Dynamic features that may extend into the future
|
127
|
-
if self.includes_future:
|
128
|
-
assert self.prediction_length is not None, (
|
129
|
-
"Prediction length must be provided if includes_future is True"
|
130
|
-
)
|
131
|
-
start_idx = start_idx + j * self.prediction_length
|
132
|
-
end_idx = end_idx + (j + 1) * self.prediction_length
|
133
|
-
if self.feat_dynamic_cat is not None:
|
134
|
-
ts[FieldName.FEAT_DYNAMIC_CAT] = self.feat_dynamic_cat[start_idx:end_idx].T
|
135
|
-
if self.feat_dynamic_real is not None:
|
136
|
-
ts[FieldName.FEAT_DYNAMIC_REAL] = self.feat_dynamic_real[start_idx:end_idx].T
|
137
|
-
yield ts
|
138
|
-
|
139
|
-
|
140
40
|
class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
141
41
|
"""Abstract class wrapping GluonTS estimators for use in autogluon.timeseries.
|
142
42
|
|
@@ -0,0 +1,109 @@
|
|
1
|
+
from typing import Any, Dict, Iterator, Optional, Type
|
2
|
+
|
3
|
+
import numpy as np
|
4
|
+
import pandas as pd
|
5
|
+
from gluonts.dataset.common import Dataset as GluonTSDataset
|
6
|
+
from gluonts.dataset.field_names import FieldName
|
7
|
+
|
8
|
+
from autogluon.timeseries.dataset.ts_dataframe import TIMESTAMP, TimeSeriesDataFrame
|
9
|
+
from autogluon.timeseries.utils.datetime import norm_freq_str
|
10
|
+
|
11
|
+
|
12
|
+
class SimpleGluonTSDataset(GluonTSDataset):
|
13
|
+
"""Wrapper for TimeSeriesDataFrame that is compatible with the GluonTS Dataset API."""
|
14
|
+
|
15
|
+
def __init__(
|
16
|
+
self,
|
17
|
+
target_df: TimeSeriesDataFrame,
|
18
|
+
freq: str,
|
19
|
+
target_column: str = "target",
|
20
|
+
feat_static_cat: Optional[np.ndarray] = None,
|
21
|
+
feat_static_real: Optional[np.ndarray] = None,
|
22
|
+
feat_dynamic_cat: Optional[np.ndarray] = None,
|
23
|
+
feat_dynamic_real: Optional[np.ndarray] = None,
|
24
|
+
past_feat_dynamic_cat: Optional[np.ndarray] = None,
|
25
|
+
past_feat_dynamic_real: Optional[np.ndarray] = None,
|
26
|
+
includes_future: bool = False,
|
27
|
+
prediction_length: Optional[int] = None,
|
28
|
+
):
|
29
|
+
assert target_df is not None
|
30
|
+
# Convert TimeSeriesDataFrame to pd.Series for faster processing
|
31
|
+
self.target_array = target_df[target_column].to_numpy(np.float32)
|
32
|
+
self.feat_static_cat = self._astype(feat_static_cat, dtype=np.int64)
|
33
|
+
self.feat_static_real = self._astype(feat_static_real, dtype=np.float32)
|
34
|
+
self.feat_dynamic_cat = self._astype(feat_dynamic_cat, dtype=np.int64)
|
35
|
+
self.feat_dynamic_real = self._astype(feat_dynamic_real, dtype=np.float32)
|
36
|
+
self.past_feat_dynamic_cat = self._astype(past_feat_dynamic_cat, dtype=np.int64)
|
37
|
+
self.past_feat_dynamic_real = self._astype(past_feat_dynamic_real, dtype=np.float32)
|
38
|
+
self.freq = self._get_freq_for_period(freq)
|
39
|
+
|
40
|
+
# Necessary to compute indptr for known_covariates at prediction time
|
41
|
+
self.includes_future = includes_future
|
42
|
+
self.prediction_length = prediction_length
|
43
|
+
|
44
|
+
# Replace inefficient groupby ITEMID with indptr that stores start:end of each time series
|
45
|
+
self.item_ids = target_df.item_ids
|
46
|
+
self.indptr = target_df.get_indptr()
|
47
|
+
self.start_timestamps = target_df.index[self.indptr[:-1]].to_frame(index=False)[TIMESTAMP]
|
48
|
+
assert len(self.item_ids) == len(self.start_timestamps)
|
49
|
+
|
50
|
+
@staticmethod
|
51
|
+
def _astype(array: Optional[np.ndarray], dtype: Type[np.generic]) -> Optional[np.ndarray]:
|
52
|
+
if array is None:
|
53
|
+
return None
|
54
|
+
else:
|
55
|
+
return array.astype(dtype)
|
56
|
+
|
57
|
+
@staticmethod
|
58
|
+
def _get_freq_for_period(freq: str) -> str:
|
59
|
+
"""Convert freq to format compatible with pd.Period.
|
60
|
+
|
61
|
+
For example, ME freq must be converted to M when creating a pd.Period.
|
62
|
+
"""
|
63
|
+
offset = pd.tseries.frequencies.to_offset(freq)
|
64
|
+
assert offset is not None
|
65
|
+
freq_name = norm_freq_str(offset)
|
66
|
+
if freq_name == "SME":
|
67
|
+
# Replace unsupported frequency "SME" with "2W"
|
68
|
+
return "2W"
|
69
|
+
elif freq_name == "bh":
|
70
|
+
# Replace unsupported frequency "bh" with dummy value "Y"
|
71
|
+
return "Y"
|
72
|
+
else:
|
73
|
+
freq_name_for_period = {"YE": "Y", "QE": "Q", "ME": "M"}.get(freq_name, freq_name)
|
74
|
+
return f"{offset.n}{freq_name_for_period}"
|
75
|
+
|
76
|
+
def __len__(self):
|
77
|
+
return len(self.indptr) - 1 # noqa
|
78
|
+
|
79
|
+
def __iter__(self) -> Iterator[Dict[str, Any]]:
|
80
|
+
for j in range(len(self.indptr) - 1):
|
81
|
+
start_idx = self.indptr[j]
|
82
|
+
end_idx = self.indptr[j + 1]
|
83
|
+
# GluonTS expects item_id to be a string
|
84
|
+
ts = {
|
85
|
+
FieldName.ITEM_ID: str(self.item_ids[j]),
|
86
|
+
FieldName.START: pd.Period(self.start_timestamps.iloc[j], freq=self.freq),
|
87
|
+
FieldName.TARGET: self.target_array[start_idx:end_idx],
|
88
|
+
}
|
89
|
+
if self.feat_static_cat is not None:
|
90
|
+
ts[FieldName.FEAT_STATIC_CAT] = self.feat_static_cat[j]
|
91
|
+
if self.feat_static_real is not None:
|
92
|
+
ts[FieldName.FEAT_STATIC_REAL] = self.feat_static_real[j]
|
93
|
+
if self.past_feat_dynamic_cat is not None:
|
94
|
+
ts[FieldName.PAST_FEAT_DYNAMIC_CAT] = self.past_feat_dynamic_cat[start_idx:end_idx].T
|
95
|
+
if self.past_feat_dynamic_real is not None:
|
96
|
+
ts[FieldName.PAST_FEAT_DYNAMIC_REAL] = self.past_feat_dynamic_real[start_idx:end_idx].T
|
97
|
+
|
98
|
+
# Dynamic features that may extend into the future
|
99
|
+
if self.includes_future:
|
100
|
+
assert self.prediction_length is not None, (
|
101
|
+
"Prediction length must be provided if includes_future is True"
|
102
|
+
)
|
103
|
+
start_idx = start_idx + j * self.prediction_length
|
104
|
+
end_idx = end_idx + (j + 1) * self.prediction_length
|
105
|
+
if self.feat_dynamic_cat is not None:
|
106
|
+
ts[FieldName.FEAT_DYNAMIC_CAT] = self.feat_dynamic_cat[start_idx:end_idx].T
|
107
|
+
if self.feat_dynamic_real is not None:
|
108
|
+
ts[FieldName.FEAT_DYNAMIC_REAL] = self.feat_dynamic_real[start_idx:end_idx].T
|
109
|
+
yield ts
|
@@ -7,13 +7,14 @@ from typing import Any, Dict, Type
|
|
7
7
|
|
8
8
|
from gluonts.model.estimator import Estimator as GluonTSEstimator
|
9
9
|
|
10
|
-
from autogluon.timeseries.models.gluonts.abstract_gluonts import AbstractGluonTSModel
|
11
10
|
from autogluon.timeseries.utils.datetime import (
|
12
11
|
get_lags_for_frequency,
|
13
12
|
get_seasonality,
|
14
13
|
get_time_features_for_frequency,
|
15
14
|
)
|
16
15
|
|
16
|
+
from .abstract import AbstractGluonTSModel
|
17
|
+
|
17
18
|
# NOTE: We avoid imports for torch and lightning.pytorch at the top level and hide them inside class methods.
|
18
19
|
# This is done to skip these imports during multiprocessing (which may cause bugs)
|
19
20
|
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250626
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.2b20250626
|
59
|
+
Requires-Dist: autogluon.common==1.3.2b20250626
|
60
|
+
Requires-Dist: autogluon.features==1.3.2b20250626
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.2b20250626
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: chronos-onnx
|
64
64
|
Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.2b20250626-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=u4d7-xMs669g5xxqIYuvEyGQ0P6Y8IoToiyg9zU
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=ozlhO-wce6YEtSMj0bfMgfNVeblfU3rI6ITuIk_WAFo,11868
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=4T7y58P3RImDbRZn-Og2qSQtOLpEocwdHi_tl1yt0Sc,58021
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=5dMBYnKftwwZVY-S-rLR9v1qoLZO3N1-0AEIXvncohs,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -32,15 +32,15 @@ autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr
|
|
32
32
|
autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
|
33
33
|
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
|
34
34
|
autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=kNIDesojKB3rbEK9jM8st4k7ZeaT6tz1znf4PsRDv2Q,20066
|
35
|
-
autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=
|
35
|
+
autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=rWqT3DB9upZb7GFVMOxc-ww2EhH8bD7TmEZNi_xTAbE,13033
|
36
36
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
|
37
37
|
autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
|
38
38
|
autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
|
39
39
|
autogluon/timeseries/models/ensemble/greedy.py,sha256=fKVLtnaJZ03zrfr9yqxvyA5IdiMtFL6TQidqw0BoqkU,7220
|
40
|
-
autogluon/timeseries/models/gluonts/__init__.py,sha256=
|
41
|
-
autogluon/timeseries/models/gluonts/
|
42
|
-
autogluon/timeseries/models/gluonts/
|
43
|
-
autogluon/timeseries/models/gluonts/
|
40
|
+
autogluon/timeseries/models/gluonts/__init__.py,sha256=YfyNYOkhhNsloA4MAavfmqKO29_q6o4lwPoV7L4_h7M,355
|
41
|
+
autogluon/timeseries/models/gluonts/abstract.py,sha256=ae-VGN2KY6W8RtzZH3wxhjUP-aMjdWZrZbAPOIYh-1Y,27808
|
42
|
+
autogluon/timeseries/models/gluonts/dataset.py,sha256=I_4Rq2CXiLiiSf99WYYaRfT7NXEUmlkW1JIZnWjAdLY,5121
|
43
|
+
autogluon/timeseries/models/gluonts/models.py,sha256=Pi_zCRkslt2-LXkZpE56aRx9J4gRCOVabqYltPtI9tE,25718
|
44
44
|
autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
|
45
45
|
autogluon/timeseries/models/local/abstract_local_model.py,sha256=0apyzut7Vs3jElsR1YipMqRQrskgrZu6kJFs-k4DB0g,12053
|
46
46
|
autogluon/timeseries/models/local/naive.py,sha256=SMdA2Tu-o7gfOLhOoh5m1oe85F3LXn9ulTzRXFhLH20,7252
|
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
60
60
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
61
61
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
62
62
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
63
|
-
autogluon.timeseries-1.3.
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
63
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
64
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/METADATA,sha256=6N5dVqfXWEyWkgMGkH3IJLrMj26LQ0nvFlKzwSg87u4,12737
|
65
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
66
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
67
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
70
|
+
autogluon.timeseries-1.3.2b20250626.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|