autogluon.timeseries 1.3.1b20250520__py3-none-any.whl → 1.3.1b20250522__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +12 -2
- autogluon/timeseries/models/ensemble/greedy.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/RECORD +12 -12
- /autogluon.timeseries-1.3.1b20250520-py3.9-nspkg.pth → /autogluon.timeseries-1.3.1b20250522-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.3.1b20250520.dist-info → autogluon.timeseries-1.3.1b20250522.dist-info}/zip-safe +0 -0
@@ -2,6 +2,7 @@ import logging
|
|
2
2
|
import math
|
3
3
|
import os
|
4
4
|
import time
|
5
|
+
import warnings
|
5
6
|
from typing import Any, Callable, Collection, Dict, List, Optional, Tuple, Union
|
6
7
|
|
7
8
|
import numpy as np
|
@@ -190,6 +191,11 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
190
191
|
target_transforms.append(Differences(differences))
|
191
192
|
self._sum_of_differences = sum(differences)
|
192
193
|
|
194
|
+
if "target_scaler" in model_params and "scaler" in model_params:
|
195
|
+
warnings.warn(
|
196
|
+
f"Both 'target_scaler' and 'scaler' hyperparameters are provided to {self.__class__.__name__}. "
|
197
|
+
"Please only set the 'target_scaler' parameter."
|
198
|
+
)
|
193
199
|
# Support "scaler" for backward compatibility
|
194
200
|
scaler_type = model_params.get("target_scaler", model_params.get("scaler"))
|
195
201
|
if scaler_type is not None:
|
@@ -500,7 +506,9 @@ class DirectTabularModel(AbstractMLForecastModel):
|
|
500
506
|
|
501
507
|
def get_hyperparameters(self) -> Dict[str, Any]:
|
502
508
|
model_params = super().get_hyperparameters()
|
503
|
-
|
509
|
+
# We don't set 'target_scaler' if user already provided 'scaler' to avoid overriding the user-provided value
|
510
|
+
if "scaler" not in model_params:
|
511
|
+
model_params.setdefault("target_scaler", "mean_abs")
|
504
512
|
if "differences" not in model_params or model_params["differences"] is None:
|
505
513
|
model_params["differences"] = []
|
506
514
|
return model_params
|
@@ -660,7 +668,9 @@ class RecursiveTabularModel(AbstractMLForecastModel):
|
|
660
668
|
|
661
669
|
def get_hyperparameters(self) -> Dict[str, Any]:
|
662
670
|
model_params = super().get_hyperparameters()
|
663
|
-
|
671
|
+
# We don't set 'target_scaler' if user already provided 'scaler' to avoid overriding the user-provided value
|
672
|
+
if "scaler" not in model_params:
|
673
|
+
model_params.setdefault("target_scaler", "standard")
|
664
674
|
if "differences" not in model_params or model_params["differences"] is None:
|
665
675
|
model_params["differences"] = [get_seasonality(self.freq)]
|
666
676
|
return model_params
|
@@ -182,5 +182,5 @@ class GreedyEnsemble(AbstractWeightedTimeSeriesEnsembleModel):
|
|
182
182
|
if weight != 0:
|
183
183
|
self.model_to_weight[model_name] = weight
|
184
184
|
|
185
|
-
weights_for_printing = {model: round(weight, 2) for model, weight in self.model_to_weight.items()}
|
185
|
+
weights_for_printing = {model: round(float(weight), 2) for model, weight in self.model_to_weight.items()}
|
186
186
|
logger.info(f"\tEnsemble weights: {pprint.pformat(weights_for_printing, width=200)}")
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.1b20250522
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.3.
|
59
|
-
Requires-Dist: autogluon.common==1.3.
|
60
|
-
Requires-Dist: autogluon.features==1.3.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.3.1b20250522
|
59
|
+
Requires-Dist: autogluon.common==1.3.1b20250522
|
60
|
+
Requires-Dist: autogluon.features==1.3.1b20250522
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.1b20250522
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: chronos-onnx
|
64
64
|
Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.3.
|
1
|
+
autogluon.timeseries-1.3.1b20250522-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=Dz-LJVU5sjlFCOqHTeYPt77DuGavdAXB0DkclpM
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=ozlhO-wce6YEtSMj0bfMgfNVeblfU3rI6ITuIk_WAFo,11868
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=4T7y58P3RImDbRZn-Og2qSQtOLpEocwdHi_tl1yt0Sc,58021
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=BLkALPRYk610L-PBxI_ulmogv45BfT8qTem7Qic1oGA,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -23,7 +23,7 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=94TG7ts
|
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=yuwz9WBxNgNOUJ6av_lfGIDyqvR1-FX_D0U-nu-0lCE,35239
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
29
29
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
@@ -36,7 +36,7 @@ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgf
|
|
36
36
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
|
37
37
|
autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
|
38
38
|
autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
|
39
|
-
autogluon/timeseries/models/ensemble/greedy.py,sha256=
|
39
|
+
autogluon/timeseries/models/ensemble/greedy.py,sha256=fKVLtnaJZ03zrfr9yqxvyA5IdiMtFL6TQidqw0BoqkU,7220
|
40
40
|
autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1julnpeoKbv5ZNuAR6-DFgA,361
|
41
41
|
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=35T8rty6sPGiaSFNpiVNmeseo1_qpn664UcWo92W5eI,32906
|
42
42
|
autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
60
60
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
61
61
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
62
62
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
63
|
-
autogluon.timeseries-1.3.
|
64
|
-
autogluon.timeseries-1.3.
|
65
|
-
autogluon.timeseries-1.3.
|
66
|
-
autogluon.timeseries-1.3.
|
67
|
-
autogluon.timeseries-1.3.
|
68
|
-
autogluon.timeseries-1.3.
|
69
|
-
autogluon.timeseries-1.3.
|
70
|
-
autogluon.timeseries-1.3.
|
63
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
64
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/METADATA,sha256=ll0BGN7XxzUKsXNaSouhXBpG1XfzNF83n-1cvjJ9plY,12737
|
65
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
66
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
67
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
70
|
+
autogluon.timeseries-1.3.1b20250522.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|