autogluon.timeseries 1.3.1b20250520__py3-none-any.whl → 1.3.1b20250522__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,6 +2,7 @@ import logging
2
2
  import math
3
3
  import os
4
4
  import time
5
+ import warnings
5
6
  from typing import Any, Callable, Collection, Dict, List, Optional, Tuple, Union
6
7
 
7
8
  import numpy as np
@@ -190,6 +191,11 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
190
191
  target_transforms.append(Differences(differences))
191
192
  self._sum_of_differences = sum(differences)
192
193
 
194
+ if "target_scaler" in model_params and "scaler" in model_params:
195
+ warnings.warn(
196
+ f"Both 'target_scaler' and 'scaler' hyperparameters are provided to {self.__class__.__name__}. "
197
+ "Please only set the 'target_scaler' parameter."
198
+ )
193
199
  # Support "scaler" for backward compatibility
194
200
  scaler_type = model_params.get("target_scaler", model_params.get("scaler"))
195
201
  if scaler_type is not None:
@@ -500,7 +506,9 @@ class DirectTabularModel(AbstractMLForecastModel):
500
506
 
501
507
  def get_hyperparameters(self) -> Dict[str, Any]:
502
508
  model_params = super().get_hyperparameters()
503
- model_params.setdefault("target_scaler", "mean_abs")
509
+ # We don't set 'target_scaler' if user already provided 'scaler' to avoid overriding the user-provided value
510
+ if "scaler" not in model_params:
511
+ model_params.setdefault("target_scaler", "mean_abs")
504
512
  if "differences" not in model_params or model_params["differences"] is None:
505
513
  model_params["differences"] = []
506
514
  return model_params
@@ -660,7 +668,9 @@ class RecursiveTabularModel(AbstractMLForecastModel):
660
668
 
661
669
  def get_hyperparameters(self) -> Dict[str, Any]:
662
670
  model_params = super().get_hyperparameters()
663
- model_params.setdefault("target_scaler", "standard")
671
+ # We don't set 'target_scaler' if user already provided 'scaler' to avoid overriding the user-provided value
672
+ if "scaler" not in model_params:
673
+ model_params.setdefault("target_scaler", "standard")
664
674
  if "differences" not in model_params or model_params["differences"] is None:
665
675
  model_params["differences"] = [get_seasonality(self.freq)]
666
676
  return model_params
@@ -182,5 +182,5 @@ class GreedyEnsemble(AbstractWeightedTimeSeriesEnsembleModel):
182
182
  if weight != 0:
183
183
  self.model_to_weight[model_name] = weight
184
184
 
185
- weights_for_printing = {model: round(weight, 2) for model, weight in self.model_to_weight.items()}
185
+ weights_for_printing = {model: round(float(weight), 2) for model, weight in self.model_to_weight.items()}
186
186
  logger.info(f"\tEnsemble weights: {pprint.pformat(weights_for_printing, width=200)}")
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.1b20250520"
3
+ __version__ = "1.3.1b20250522"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.3.1b20250520
3
+ Version: 1.3.1b20250522
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.3.1b20250520
59
- Requires-Dist: autogluon.common==1.3.1b20250520
60
- Requires-Dist: autogluon.features==1.3.1b20250520
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.1b20250520
58
+ Requires-Dist: autogluon.core[raytune]==1.3.1b20250522
59
+ Requires-Dist: autogluon.common==1.3.1b20250522
60
+ Requires-Dist: autogluon.features==1.3.1b20250522
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.1b20250522
62
62
  Provides-Extra: all
63
63
  Provides-Extra: chronos-onnx
64
64
  Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.3.1b20250520-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.1b20250522-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=Dz-LJVU5sjlFCOqHTeYPt77DuGavdAXB0DkclpM
6
6
  autogluon/timeseries/regressor.py,sha256=ozlhO-wce6YEtSMj0bfMgfNVeblfU3rI6ITuIk_WAFo,11868
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=4T7y58P3RImDbRZn-Og2qSQtOLpEocwdHi_tl1yt0Sc,58021
9
- autogluon/timeseries/version.py,sha256=khlU-jo-kAeH0qe-3W3KTUjwGKccithHlDmiDf6uvcE,91
9
+ autogluon/timeseries/version.py,sha256=BLkALPRYk610L-PBxI_ulmogv45BfT8qTem7Qic1oGA,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -23,7 +23,7 @@ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=94TG7ts
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=5JFQTZtYU4bRyNrR8lC-hikI573jIqOxBE2dw35Dg-M,34607
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=yuwz9WBxNgNOUJ6av_lfGIDyqvR1-FX_D0U-nu-0lCE,35239
27
27
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy2WA0jo6Jh25MRVyyZ8ONrqlV96kpw0,2735
28
28
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
29
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
@@ -36,7 +36,7 @@ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgf
36
36
  autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
37
37
  autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
38
38
  autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
39
- autogluon/timeseries/models/ensemble/greedy.py,sha256=oW2d3-cce1Xck3NOtTh_8uHnjmc-2hGntPGoJQHUibE,7213
39
+ autogluon/timeseries/models/ensemble/greedy.py,sha256=fKVLtnaJZ03zrfr9yqxvyA5IdiMtFL6TQidqw0BoqkU,7220
40
40
  autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1julnpeoKbv5ZNuAR6-DFgA,361
41
41
  autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=35T8rty6sPGiaSFNpiVNmeseo1_qpn664UcWo92W5eI,32906
42
42
  autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
63
- autogluon.timeseries-1.3.1b20250520.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.3.1b20250520.dist-info/METADATA,sha256=xrJni8KtP1aaNqcOC75YrN31cvCoiWcE87SQiFNhx7M,12737
65
- autogluon.timeseries-1.3.1b20250520.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.3.1b20250520.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
- autogluon.timeseries-1.3.1b20250520.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.3.1b20250520.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.3.1b20250520.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.3.1b20250520.dist-info/RECORD,,
63
+ autogluon.timeseries-1.3.1b20250522.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.3.1b20250522.dist-info/METADATA,sha256=ll0BGN7XxzUKsXNaSouhXBpG1XfzNF83n-1cvjJ9plY,12737
65
+ autogluon.timeseries-1.3.1b20250522.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.3.1b20250522.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.3.1b20250522.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.3.1b20250522.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.1b20250522.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.3.1b20250522.dist-info/RECORD,,