autogluon.timeseries 1.2.1b20250429__py3-none-any.whl → 1.3.0b20250501__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -240,12 +240,12 @@ class TimeSeriesScorer:
240
240
  @overload
241
241
  @staticmethod
242
242
  def check_get_horizon_weight(
243
- horizon_weight: Sequence[float] | np.ndarray, prediction_length: int
243
+ horizon_weight: Union[Sequence[float], np.ndarray], prediction_length: int
244
244
  ) -> npt.NDArray[np.float64]: ...
245
245
 
246
246
  @staticmethod
247
247
  def check_get_horizon_weight(
248
- horizon_weight: Sequence[float] | np.ndarray | None, prediction_length: int
248
+ horizon_weight: Union[Sequence[float], np.ndarray, None], prediction_length: int
249
249
  ) -> Optional[npt.NDArray[np.float64]]:
250
250
  """Convert horizon_weight to a non-negative numpy array that sums up to prediction_length.
251
251
  Raises an exception if horizon_weight has an invalid shape or contains invalid values.
@@ -6,7 +6,7 @@ import numpy as np
6
6
  import pandas as pd
7
7
 
8
8
  from autogluon.core.models import AbstractModel
9
- from autogluon.tabular.register import ag_model_register as tabular_ag_model_register
9
+ from autogluon.tabular.registry import ag_model_registry as tabular_ag_model_registry
10
10
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TimeSeriesDataFrame
11
11
  from autogluon.timeseries.utils.features import CovariateMetadata
12
12
 
@@ -85,7 +85,7 @@ class GlobalCovariateRegressor(CovariateRegressor):
85
85
  include_static_features: bool = True,
86
86
  include_item_id: bool = False,
87
87
  ):
88
- tabular_model_types = tabular_ag_model_register.key_to_cls_map()
88
+ tabular_model_types = tabular_ag_model_registry.key_to_cls_map()
89
89
  if model_name not in tabular_model_types:
90
90
  raise ValueError(
91
91
  f"Tabular model {model_name} not supported. Available models: {list(tabular_model_types)}"
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250429"
3
+ __version__ = "1.3.0b20250501"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20250429
3
+ Version: 1.3.0b20250501
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250429
59
- Requires-Dist: autogluon.common==1.2.1b20250429
60
- Requires-Dist: autogluon.features==1.2.1b20250429
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250429
58
+ Requires-Dist: autogluon.core[raytune]==1.3.0b20250501
59
+ Requires-Dist: autogluon.common==1.3.0b20250501
60
+ Requires-Dist: autogluon.features==1.3.0b20250501
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.3.0b20250501
62
62
  Provides-Extra: all
63
63
  Provides-Extra: chronos-onnx
64
64
  Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
@@ -1,18 +1,18 @@
1
- autogluon.timeseries-1.2.1b20250429-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.3.0b20250501-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
5
5
  autogluon/timeseries/predictor.py,sha256=Dz-LJVU5sjlFCOqHTeYPt77DuGavdAXB0DkclpM55rY,88173
6
- autogluon/timeseries/regressor.py,sha256=xw5VPrXS-NQ_Ts4ppDjoNV0TdqUYjW4VINUtb_BZdiI,11868
6
+ autogluon/timeseries/regressor.py,sha256=ozlhO-wce6YEtSMj0bfMgfNVeblfU3rI6ITuIk_WAFo,11868
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=57OyqlTAVahDPxF5GmdDljIr1RbjnIUL_d5TbrkTJ2c,58075
9
- autogluon/timeseries/version.py,sha256=7Ru02g92ATlpPSc5oE62C9C2_CdKOiHq1BfsG7ZFpxY,91
9
+ autogluon/timeseries/version.py,sha256=PjN3L7xta4S4qi2utrf_E5wFSxflAwpGbX75OwEys3I,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
13
  autogluon/timeseries/dataset/ts_dataframe.py,sha256=W3VE65lFyWmqMQ3XHN4Jhrqf_dO1EOLneNL2QDvVxeY,48120
14
14
  autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
15
- autogluon/timeseries/metrics/abstract.py,sha256=Z4ThftPBgLl9AgPQoJWcjHpVaOWWr6X3s3WwpvpAUOg,11818
15
+ autogluon/timeseries/metrics/abstract.py,sha256=BpHVmzkzM6EN63NQrDRkApIeAyrpT6Y9LZiPEygaxvE,11829
16
16
  autogluon/timeseries/metrics/point.py,sha256=xllyGh11otbmUVHyIaceROPR3qyllWPQ9xlSmIGI3EI,18306
17
17
  autogluon/timeseries/metrics/quantile.py,sha256=vhmETtjPsIfVlvtILNAT6F2PtIDNPrOroy-U1FQbgw8,4632
18
18
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
63
- autogluon.timeseries-1.2.1b20250429.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.2.1b20250429.dist-info/METADATA,sha256=md6-QfhO9wPhBklh_IQbwG3rFjreUlFimtB3Vug0C2A,12737
65
- autogluon.timeseries-1.2.1b20250429.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.2.1b20250429.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
- autogluon.timeseries-1.2.1b20250429.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.2.1b20250429.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.2.1b20250429.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.2.1b20250429.dist-info/RECORD,,
63
+ autogluon.timeseries-1.3.0b20250501.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.3.0b20250501.dist-info/METADATA,sha256=rr8FHvtonAQT_I0I0-5ytDXX19ocGfwdEdHcTxeidvs,12737
65
+ autogluon.timeseries-1.3.0b20250501.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.3.0b20250501.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.3.0b20250501.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.3.0b20250501.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.3.0b20250501.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.3.0b20250501.dist-info/RECORD,,