autogluon.timeseries 1.2.1b20250428__py3-none-any.whl → 1.2.1b20250430__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,5 @@
1
1
  from __future__ import annotations
2
+
2
3
  from pprint import pformat
3
4
  from typing import Any, Dict, Optional, Sequence, Type, Union
4
5
 
@@ -9,6 +10,8 @@ from .point import MAE, MAPE, MASE, MSE, RMSE, RMSLE, RMSSE, SMAPE, WAPE, WCD
9
10
  from .quantile import SQL, WQL
10
11
 
11
12
  __all__ = [
13
+ "TimeSeriesScorer",
14
+ "check_get_evaluation_metric",
12
15
  "MAE",
13
16
  "MAPE",
14
17
  "MASE",
@@ -240,12 +240,12 @@ class TimeSeriesScorer:
240
240
  @overload
241
241
  @staticmethod
242
242
  def check_get_horizon_weight(
243
- horizon_weight: Sequence[float] | np.ndarray, prediction_length: int
243
+ horizon_weight: Union[Sequence[float], np.ndarray], prediction_length: int
244
244
  ) -> npt.NDArray[np.float64]: ...
245
245
 
246
246
  @staticmethod
247
247
  def check_get_horizon_weight(
248
- horizon_weight: Sequence[float] | np.ndarray | None, prediction_length: int
248
+ horizon_weight: Union[Sequence[float], np.ndarray, None], prediction_length: int
249
249
  ) -> Optional[npt.NDArray[np.float64]]:
250
250
  """Convert horizon_weight to a non-negative numpy array that sums up to prediction_length.
251
251
  Raises an exception if horizon_weight has an invalid shape or contains invalid values.
@@ -1,11 +1,10 @@
1
+ from .base import BaseChronosPipeline, ForecastType
1
2
  from .chronos import ChronosPipeline
2
3
  from .chronos_bolt import ChronosBoltPipeline
3
- from .base import BaseChronosPipeline, ForecastType
4
-
5
4
 
6
5
  __all__ = [
7
6
  "BaseChronosPipeline",
8
7
  "ChronosBoltPipeline",
9
8
  "ChronosPipeline",
10
9
  "ForecastType",
11
- ]
10
+ ]
@@ -1,3 +1,3 @@
1
1
  from .abstract import AbstractTimeSeriesEnsembleModel
2
+ from .basic import PerformanceWeightedEnsemble, SimpleAverageEnsemble
2
3
  from .greedy import GreedyEnsemble
3
- from .basic import SimpleAverageEnsemble, PerformanceWeightedEnsemble
@@ -1,2 +1,2 @@
1
1
  from .covariate_scaler import CovariateScaler, get_covariate_scaler
2
- from .target_scaler import TargetScaler, get_target_scaler
2
+ from .target_scaler import TargetScaler, get_target_scaler
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250428"
3
+ __version__ = "1.2.1b20250430"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20250428
3
+ Version: 1.2.1b20250430
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250428
59
- Requires-Dist: autogluon.common==1.2.1b20250428
60
- Requires-Dist: autogluon.features==1.2.1b20250428
61
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250428
58
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250430
59
+ Requires-Dist: autogluon.common==1.2.1b20250430
60
+ Requires-Dist: autogluon.features==1.2.1b20250430
61
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250430
62
62
  Provides-Extra: all
63
63
  Provides-Extra: chronos-onnx
64
64
  Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.2.1b20250428-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2.1b20250430-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
@@ -6,13 +6,13 @@ autogluon/timeseries/predictor.py,sha256=Dz-LJVU5sjlFCOqHTeYPt77DuGavdAXB0DkclpM
6
6
  autogluon/timeseries/regressor.py,sha256=xw5VPrXS-NQ_Ts4ppDjoNV0TdqUYjW4VINUtb_BZdiI,11868
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=57OyqlTAVahDPxF5GmdDljIr1RbjnIUL_d5TbrkTJ2c,58075
9
- autogluon/timeseries/version.py,sha256=ZqDXviJX6gr3bhUWh9_IM7nMN154ruvly_t21L9cGl0,91
9
+ autogluon/timeseries/version.py,sha256=zeXSLnPAR1owd06FBwdo0v8W6t6qnf40zncQz3sVIaU,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
13
  autogluon/timeseries/dataset/ts_dataframe.py,sha256=W3VE65lFyWmqMQ3XHN4Jhrqf_dO1EOLneNL2QDvVxeY,48120
14
- autogluon/timeseries/metrics/__init__.py,sha256=OTrQbuCLhn9kYJ2JhTlNisMA53hEmvZepzT3AaMj0LE,3542
15
- autogluon/timeseries/metrics/abstract.py,sha256=Z4ThftPBgLl9AgPQoJWcjHpVaOWWr6X3s3WwpvpAUOg,11818
14
+ autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
15
+ autogluon/timeseries/metrics/abstract.py,sha256=BpHVmzkzM6EN63NQrDRkApIeAyrpT6Y9LZiPEygaxvE,11829
16
16
  autogluon/timeseries/metrics/point.py,sha256=xllyGh11otbmUVHyIaceROPR3qyllWPQ9xlSmIGI3EI,18306
17
17
  autogluon/timeseries/metrics/quantile.py,sha256=vhmETtjPsIfVlvtILNAT6F2PtIDNPrOroy-U1FQbgw8,4632
18
18
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
@@ -28,12 +28,12 @@ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy
28
28
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
29
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
30
30
  autogluon/timeseries/models/chronos/model.py,sha256=dYc3nZE6BqpunwI2IyuOm1LGW1RJJEzxYCB5ZW0585E,31649
31
- autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
31
+ autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
32
32
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
33
33
  autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
34
34
  autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=kNIDesojKB3rbEK9jM8st4k7ZeaT6tz1znf4PsRDv2Q,20066
35
35
  autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgfUc1iYowWPY84dnGN0uyqyHyQ,13131
36
- autogluon/timeseries/models/ensemble/__init__.py,sha256=_BivnZaOWJiIvu93IQy0mrLdCZKT2NHHSqkf31hwF2s,158
36
+ autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
37
37
  autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
38
38
  autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
39
39
  autogluon/timeseries/models/ensemble/greedy.py,sha256=oW2d3-cce1Xck3NOtTh_8uHnjmc-2hGntPGoJQHUibE,7213
@@ -48,7 +48,7 @@ autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgo
48
48
  autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
49
49
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
50
50
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
51
- autogluon/timeseries/transforms/__init__.py,sha256=fkFc4Q1Dlh0vVRgO7nPD7BgNL9dOki8THPWFkfdIKkM,128
51
+ autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
52
52
  autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
53
53
  autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
54
54
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
63
- autogluon.timeseries-1.2.1b20250428.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.2.1b20250428.dist-info/METADATA,sha256=bAWBTuj9KxJ6b8DRKKN8IC7LkhcGcAFx0p_sLFy5xc0,12737
65
- autogluon.timeseries-1.2.1b20250428.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.2.1b20250428.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
- autogluon.timeseries-1.2.1b20250428.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.2.1b20250428.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.2.1b20250428.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.2.1b20250428.dist-info/RECORD,,
63
+ autogluon.timeseries-1.2.1b20250430.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.2.1b20250430.dist-info/METADATA,sha256=rH2DbkTw_5Xv6gabUgTPJk0v6IDUP7ds9o6TPD6GUsw,12737
65
+ autogluon.timeseries-1.2.1b20250430.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.2.1b20250430.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.2.1b20250430.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.2.1b20250430.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.2.1b20250430.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.2.1b20250430.dist-info/RECORD,,