autogluon.timeseries 1.2.1b20250428__py3-none-any.whl → 1.2.1b20250430__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/metrics/__init__.py +3 -0
- autogluon/timeseries/metrics/abstract.py +2 -2
- autogluon/timeseries/models/chronos/pipeline/__init__.py +2 -3
- autogluon/timeseries/models/ensemble/__init__.py +1 -1
- autogluon/timeseries/transforms/__init__.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/RECORD +15 -15
- /autogluon.timeseries-1.2.1b20250428-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250430-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250428.dist-info → autogluon.timeseries-1.2.1b20250430.dist-info}/zip-safe +0 -0
@@ -1,4 +1,5 @@
|
|
1
1
|
from __future__ import annotations
|
2
|
+
|
2
3
|
from pprint import pformat
|
3
4
|
from typing import Any, Dict, Optional, Sequence, Type, Union
|
4
5
|
|
@@ -9,6 +10,8 @@ from .point import MAE, MAPE, MASE, MSE, RMSE, RMSLE, RMSSE, SMAPE, WAPE, WCD
|
|
9
10
|
from .quantile import SQL, WQL
|
10
11
|
|
11
12
|
__all__ = [
|
13
|
+
"TimeSeriesScorer",
|
14
|
+
"check_get_evaluation_metric",
|
12
15
|
"MAE",
|
13
16
|
"MAPE",
|
14
17
|
"MASE",
|
@@ -240,12 +240,12 @@ class TimeSeriesScorer:
|
|
240
240
|
@overload
|
241
241
|
@staticmethod
|
242
242
|
def check_get_horizon_weight(
|
243
|
-
horizon_weight: Sequence[float]
|
243
|
+
horizon_weight: Union[Sequence[float], np.ndarray], prediction_length: int
|
244
244
|
) -> npt.NDArray[np.float64]: ...
|
245
245
|
|
246
246
|
@staticmethod
|
247
247
|
def check_get_horizon_weight(
|
248
|
-
horizon_weight: Sequence[float]
|
248
|
+
horizon_weight: Union[Sequence[float], np.ndarray, None], prediction_length: int
|
249
249
|
) -> Optional[npt.NDArray[np.float64]]:
|
250
250
|
"""Convert horizon_weight to a non-negative numpy array that sums up to prediction_length.
|
251
251
|
Raises an exception if horizon_weight has an invalid shape or contains invalid values.
|
@@ -1,11 +1,10 @@
|
|
1
|
+
from .base import BaseChronosPipeline, ForecastType
|
1
2
|
from .chronos import ChronosPipeline
|
2
3
|
from .chronos_bolt import ChronosBoltPipeline
|
3
|
-
from .base import BaseChronosPipeline, ForecastType
|
4
|
-
|
5
4
|
|
6
5
|
__all__ = [
|
7
6
|
"BaseChronosPipeline",
|
8
7
|
"ChronosBoltPipeline",
|
9
8
|
"ChronosPipeline",
|
10
9
|
"ForecastType",
|
11
|
-
]
|
10
|
+
]
|
@@ -1,2 +1,2 @@
|
|
1
1
|
from .covariate_scaler import CovariateScaler, get_covariate_scaler
|
2
|
-
from .target_scaler import TargetScaler, get_target_scaler
|
2
|
+
from .target_scaler import TargetScaler, get_target_scaler
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250430
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
59
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
-
Requires-Dist: autogluon.features==1.2.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250430
|
59
|
+
Requires-Dist: autogluon.common==1.2.1b20250430
|
60
|
+
Requires-Dist: autogluon.features==1.2.1b20250430
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250430
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: chronos-onnx
|
64
64
|
Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.2.
|
1
|
+
autogluon.timeseries-1.2.1b20250430-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,13 +6,13 @@ autogluon/timeseries/predictor.py,sha256=Dz-LJVU5sjlFCOqHTeYPt77DuGavdAXB0DkclpM
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=xw5VPrXS-NQ_Ts4ppDjoNV0TdqUYjW4VINUtb_BZdiI,11868
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=57OyqlTAVahDPxF5GmdDljIr1RbjnIUL_d5TbrkTJ2c,58075
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=zeXSLnPAR1owd06FBwdo0v8W6t6qnf40zncQz3sVIaU,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
13
13
|
autogluon/timeseries/dataset/ts_dataframe.py,sha256=W3VE65lFyWmqMQ3XHN4Jhrqf_dO1EOLneNL2QDvVxeY,48120
|
14
|
-
autogluon/timeseries/metrics/__init__.py,sha256=
|
15
|
-
autogluon/timeseries/metrics/abstract.py,sha256=
|
14
|
+
autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
|
15
|
+
autogluon/timeseries/metrics/abstract.py,sha256=BpHVmzkzM6EN63NQrDRkApIeAyrpT6Y9LZiPEygaxvE,11829
|
16
16
|
autogluon/timeseries/metrics/point.py,sha256=xllyGh11otbmUVHyIaceROPR3qyllWPQ9xlSmIGI3EI,18306
|
17
17
|
autogluon/timeseries/metrics/quantile.py,sha256=vhmETtjPsIfVlvtILNAT6F2PtIDNPrOroy-U1FQbgw8,4632
|
18
18
|
autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
|
@@ -28,12 +28,12 @@ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy
|
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
29
29
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
30
30
|
autogluon/timeseries/models/chronos/model.py,sha256=dYc3nZE6BqpunwI2IyuOm1LGW1RJJEzxYCB5ZW0585E,31649
|
31
|
-
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=
|
31
|
+
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
|
32
32
|
autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
|
33
33
|
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
|
34
34
|
autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=kNIDesojKB3rbEK9jM8st4k7ZeaT6tz1znf4PsRDv2Q,20066
|
35
35
|
autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgfUc1iYowWPY84dnGN0uyqyHyQ,13131
|
36
|
-
autogluon/timeseries/models/ensemble/__init__.py,sha256=
|
36
|
+
autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
|
37
37
|
autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
|
38
38
|
autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
|
39
39
|
autogluon/timeseries/models/ensemble/greedy.py,sha256=oW2d3-cce1Xck3NOtTh_8uHnjmc-2hGntPGoJQHUibE,7213
|
@@ -48,7 +48,7 @@ autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgo
|
|
48
48
|
autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
|
49
49
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
50
50
|
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
|
51
|
-
autogluon/timeseries/transforms/__init__.py,sha256=
|
51
|
+
autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
|
52
52
|
autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
|
53
53
|
autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
|
54
54
|
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
60
60
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
61
61
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
62
62
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
63
|
-
autogluon.timeseries-1.2.
|
64
|
-
autogluon.timeseries-1.2.
|
65
|
-
autogluon.timeseries-1.2.
|
66
|
-
autogluon.timeseries-1.2.
|
67
|
-
autogluon.timeseries-1.2.
|
68
|
-
autogluon.timeseries-1.2.
|
69
|
-
autogluon.timeseries-1.2.
|
70
|
-
autogluon.timeseries-1.2.
|
63
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
64
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/METADATA,sha256=rH2DbkTw_5Xv6gabUgTPJk0v6IDUP7ds9o6TPD6GUsw,12737
|
65
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
66
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
67
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
70
|
+
autogluon.timeseries-1.2.1b20250430.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|