autogluon.timeseries 1.2.1b20250427__py3-none-any.whl → 1.2.1b20250429__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/metrics/__init__.py +7 -1
- autogluon/timeseries/models/chronos/pipeline/__init__.py +2 -3
- autogluon/timeseries/models/ensemble/__init__.py +1 -1
- autogluon/timeseries/transforms/__init__.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/METADATA +5 -5
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/RECORD +14 -14
- /autogluon.timeseries-1.2.1b20250427-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250429-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250427.dist-info → autogluon.timeseries-1.2.1b20250429.dist-info}/zip-safe +0 -0
@@ -1,3 +1,5 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
1
3
|
from pprint import pformat
|
2
4
|
from typing import Any, Dict, Optional, Sequence, Type, Union
|
3
5
|
|
@@ -8,6 +10,8 @@ from .point import MAE, MAPE, MASE, MSE, RMSE, RMSLE, RMSSE, SMAPE, WAPE, WCD
|
|
8
10
|
from .quantile import SQL, WQL
|
9
11
|
|
10
12
|
__all__ = [
|
13
|
+
"TimeSeriesScorer",
|
14
|
+
"check_get_evaluation_metric",
|
11
15
|
"MAE",
|
12
16
|
"MAPE",
|
13
17
|
"MASE",
|
@@ -80,7 +84,9 @@ def check_get_evaluation_metric(
|
|
80
84
|
if seasonal_period is not None:
|
81
85
|
scorer.seasonal_period = seasonal_period
|
82
86
|
if horizon_weight is not None:
|
83
|
-
scorer.horizon_weight = scorer.check_get_horizon_weight(
|
87
|
+
scorer.horizon_weight = scorer.check_get_horizon_weight(
|
88
|
+
horizon_weight, prediction_length=prediction_length
|
89
|
+
)
|
84
90
|
elif isinstance(eval_metric, type) and issubclass(eval_metric, TimeSeriesScorer):
|
85
91
|
# e.g., user passed `eval_metric=CustomMetric` instead of `eval_metric=CustomMetric()`
|
86
92
|
scorer = eval_metric(**metric_kwargs)
|
@@ -1,11 +1,10 @@
|
|
1
|
+
from .base import BaseChronosPipeline, ForecastType
|
1
2
|
from .chronos import ChronosPipeline
|
2
3
|
from .chronos_bolt import ChronosBoltPipeline
|
3
|
-
from .base import BaseChronosPipeline, ForecastType
|
4
|
-
|
5
4
|
|
6
5
|
__all__ = [
|
7
6
|
"BaseChronosPipeline",
|
8
7
|
"ChronosBoltPipeline",
|
9
8
|
"ChronosPipeline",
|
10
9
|
"ForecastType",
|
11
|
-
]
|
10
|
+
]
|
@@ -1,2 +1,2 @@
|
|
1
1
|
from .covariate_scaler import CovariateScaler, get_covariate_scaler
|
2
|
-
from .target_scaler import TargetScaler, get_target_scaler
|
2
|
+
from .target_scaler import TargetScaler, get_target_scaler
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250429
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,10 +55,10 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
59
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
-
Requires-Dist: autogluon.features==1.2.
|
61
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250429
|
59
|
+
Requires-Dist: autogluon.common==1.2.1b20250429
|
60
|
+
Requires-Dist: autogluon.features==1.2.1b20250429
|
61
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250429
|
62
62
|
Provides-Extra: all
|
63
63
|
Provides-Extra: chronos-onnx
|
64
64
|
Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.2.
|
1
|
+
autogluon.timeseries-1.2.1b20250429-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=pIn4YSOk0aqCWyBpIlwnAsFnG4h7PLXk8guFH3wFS-w,13923
|
@@ -6,12 +6,12 @@ autogluon/timeseries/predictor.py,sha256=Dz-LJVU5sjlFCOqHTeYPt77DuGavdAXB0DkclpM
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=xw5VPrXS-NQ_Ts4ppDjoNV0TdqUYjW4VINUtb_BZdiI,11868
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=57OyqlTAVahDPxF5GmdDljIr1RbjnIUL_d5TbrkTJ2c,58075
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=7Ru02g92ATlpPSc5oE62C9C2_CdKOiHq1BfsG7ZFpxY,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
13
13
|
autogluon/timeseries/dataset/ts_dataframe.py,sha256=W3VE65lFyWmqMQ3XHN4Jhrqf_dO1EOLneNL2QDvVxeY,48120
|
14
|
-
autogluon/timeseries/metrics/__init__.py,sha256=
|
14
|
+
autogluon/timeseries/metrics/__init__.py,sha256=wfqEf2AiaqCcFGXVGhpNrbo1XBQFmJCS8gRa8Qk2L50,3602
|
15
15
|
autogluon/timeseries/metrics/abstract.py,sha256=Z4ThftPBgLl9AgPQoJWcjHpVaOWWr6X3s3WwpvpAUOg,11818
|
16
16
|
autogluon/timeseries/metrics/point.py,sha256=xllyGh11otbmUVHyIaceROPR3qyllWPQ9xlSmIGI3EI,18306
|
17
17
|
autogluon/timeseries/metrics/quantile.py,sha256=vhmETtjPsIfVlvtILNAT6F2PtIDNPrOroy-U1FQbgw8,4632
|
@@ -28,12 +28,12 @@ autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=aI1QJLJaOB5Xy
|
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
29
29
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
30
30
|
autogluon/timeseries/models/chronos/model.py,sha256=dYc3nZE6BqpunwI2IyuOm1LGW1RJJEzxYCB5ZW0585E,31649
|
31
|
-
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=
|
31
|
+
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=bkTR0LSKIxAaKFOr9A0HSkCtnRdikDPUPp810WOKgxE,247
|
32
32
|
autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
|
33
33
|
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
|
34
34
|
autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=kNIDesojKB3rbEK9jM8st4k7ZeaT6tz1znf4PsRDv2Q,20066
|
35
35
|
autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgfUc1iYowWPY84dnGN0uyqyHyQ,13131
|
36
|
-
autogluon/timeseries/models/ensemble/__init__.py,sha256=
|
36
|
+
autogluon/timeseries/models/ensemble/__init__.py,sha256=x2Y6dWk15XugTEWNUKq8U5z6nIjelo3UjpI-TfS13OE,159
|
37
37
|
autogluon/timeseries/models/ensemble/abstract.py,sha256=ie-BKD4JIkQQoKqtf6sYI5Aix7dSgywFsSdeGPxoElk,5821
|
38
38
|
autogluon/timeseries/models/ensemble/basic.py,sha256=BRPWg_Wgfb87iInFSoTRE75BRHaovRR5HFRvzxET_wU,3423
|
39
39
|
autogluon/timeseries/models/ensemble/greedy.py,sha256=oW2d3-cce1Xck3NOtTh_8uHnjmc-2hGntPGoJQHUibE,7213
|
@@ -48,7 +48,7 @@ autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgo
|
|
48
48
|
autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
|
49
49
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
50
50
|
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=xW55TMg7kgta-TmBpVZGcDQlBdBN_eW1z1lVNjZGhpo,11833
|
51
|
-
autogluon/timeseries/transforms/__init__.py,sha256=
|
51
|
+
autogluon/timeseries/transforms/__init__.py,sha256=fKlT4pkJ_8Gl7IUTc3uSDzt2Xow5iH5w6fPB3ePNrTg,127
|
52
52
|
autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
|
53
53
|
autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
|
54
54
|
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
60
60
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
61
61
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
62
62
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
63
|
-
autogluon.timeseries-1.2.
|
64
|
-
autogluon.timeseries-1.2.
|
65
|
-
autogluon.timeseries-1.2.
|
66
|
-
autogluon.timeseries-1.2.
|
67
|
-
autogluon.timeseries-1.2.
|
68
|
-
autogluon.timeseries-1.2.
|
69
|
-
autogluon.timeseries-1.2.
|
70
|
-
autogluon.timeseries-1.2.
|
63
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
64
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/METADATA,sha256=md6-QfhO9wPhBklh_IQbwG3rFjreUlFimtB3Vug0C2A,12737
|
65
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
66
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
67
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
69
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
70
|
+
autogluon.timeseries-1.2.1b20250429.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|