autogluon.timeseries 1.2.1b20250416__py3-none-any.whl → 1.2.1b20250418__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/learner.py +8 -6
- autogluon/timeseries/metrics/abstract.py +1 -1
- autogluon/timeseries/metrics/point.py +4 -4
- autogluon/timeseries/metrics/quantile.py +2 -2
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +123 -204
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +9 -9
- autogluon/timeseries/models/chronos/model.py +37 -30
- autogluon/timeseries/models/gluonts/abstract_gluonts.py +34 -30
- autogluon/timeseries/models/gluonts/torch/models.py +8 -8
- autogluon/timeseries/models/local/abstract_local_model.py +1 -1
- autogluon/timeseries/models/local/naive.py +2 -2
- autogluon/timeseries/models/multi_window/multi_window_model.py +0 -3
- autogluon/timeseries/models/presets.py +2 -2
- autogluon/timeseries/predictor.py +76 -59
- autogluon/timeseries/regressor.py +5 -4
- autogluon/timeseries/trainer.py +14 -13
- autogluon/timeseries/utils/features.py +5 -2
- autogluon/timeseries/utils/forecast.py +13 -8
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/METADATA +4 -4
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/RECORD +28 -28
- /autogluon.timeseries-1.2.1b20250416-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250418-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/zip-safe +0 -0
@@ -6,7 +6,7 @@ import numpy as np
|
|
6
6
|
import pandas as pd
|
7
7
|
|
8
8
|
from autogluon.core.models import AbstractModel
|
9
|
-
from autogluon.tabular.
|
9
|
+
from autogluon.tabular.register import ag_model_register as tabular_ag_model_register
|
10
10
|
from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TimeSeriesDataFrame
|
11
11
|
from autogluon.timeseries.utils.features import CovariateMetadata
|
12
12
|
|
@@ -85,12 +85,13 @@ class GlobalCovariateRegressor(CovariateRegressor):
|
|
85
85
|
include_static_features: bool = True,
|
86
86
|
include_item_id: bool = False,
|
87
87
|
):
|
88
|
-
|
88
|
+
tabular_model_types = tabular_ag_model_register.key_to_cls_map()
|
89
|
+
if model_name not in tabular_model_types:
|
89
90
|
raise ValueError(
|
90
|
-
f"Tabular model {model_name} not supported. Available models: {list(
|
91
|
+
f"Tabular model {model_name} not supported. Available models: {list(tabular_model_types)}"
|
91
92
|
)
|
92
93
|
self.target = target
|
93
|
-
self.model_type =
|
94
|
+
self.model_type = tabular_model_types[model_name]
|
94
95
|
self.model_name = model_name
|
95
96
|
self.model_hyperparameters = model_hyperparameters or {}
|
96
97
|
self.refit_during_predict = refit_during_predict
|
autogluon/timeseries/trainer.py
CHANGED
@@ -67,7 +67,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
67
67
|
self.prediction_length = prediction_length
|
68
68
|
self.quantile_levels = kwargs.get("quantile_levels", [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
|
69
69
|
self.target = kwargs.get("target", "target")
|
70
|
-
self.
|
70
|
+
self.covariate_metadata = kwargs.get("covariate_metadata", CovariateMetadata())
|
71
71
|
self.is_data_saved = False
|
72
72
|
self.skip_model_selection = skip_model_selection
|
73
73
|
# Ensemble cannot be fit if val_scores are not computed
|
@@ -361,7 +361,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
361
361
|
model.fit_time = model.fit_time or (fit_end_time - fit_start_time)
|
362
362
|
|
363
363
|
if time_limit is not None:
|
364
|
-
time_limit = fit_end_time - fit_start_time
|
364
|
+
time_limit = time_limit - (fit_end_time - fit_start_time)
|
365
365
|
if val_data is not None and not self.skip_model_selection:
|
366
366
|
model.score_and_cache_oof(
|
367
367
|
val_data, store_val_score=True, store_predict_time=True, time_limit=time_limit
|
@@ -434,7 +434,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
434
434
|
"When `skip_model_selection=True`, only a single model must be provided via `hyperparameters` "
|
435
435
|
f"but {len(models)} models were given"
|
436
436
|
)
|
437
|
-
if contains_searchspace(models[0].
|
437
|
+
if contains_searchspace(models[0].get_hyperparameters()):
|
438
438
|
raise ValueError(
|
439
439
|
"When `skip_model_selection=True`, model configuration should contain no search spaces."
|
440
440
|
)
|
@@ -462,7 +462,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
462
462
|
if random_seed is not None:
|
463
463
|
seed_everything(random_seed + i)
|
464
464
|
|
465
|
-
if contains_searchspace(model.
|
465
|
+
if contains_searchspace(model.get_hyperparameters()):
|
466
466
|
fit_log_message = f"Hyperparameter tuning model {model.name}. "
|
467
467
|
if time_left is not None:
|
468
468
|
fit_log_message += (
|
@@ -576,7 +576,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
576
576
|
path=self.path,
|
577
577
|
freq=data_per_window[0].freq,
|
578
578
|
quantile_levels=self.quantile_levels,
|
579
|
-
|
579
|
+
covariate_metadata=self.covariate_metadata,
|
580
580
|
)
|
581
581
|
with warning_filter():
|
582
582
|
ensemble.fit_ensemble(model_preds, data_per_window=data_per_window, time_limit=time_limit)
|
@@ -629,14 +629,15 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
629
629
|
if isinstance(model, MultiWindowBacktestingModel):
|
630
630
|
model = model.most_recent_model
|
631
631
|
assert model is not None
|
632
|
-
model_info[model_name]["hyperparameters"] = model.
|
632
|
+
model_info[model_name]["hyperparameters"] = model.get_hyperparameters()
|
633
633
|
|
634
634
|
if extra_metrics is None:
|
635
635
|
extra_metrics = []
|
636
636
|
|
637
637
|
if data is not None:
|
638
638
|
past_data, known_covariates = data.get_model_inputs_for_scoring(
|
639
|
-
prediction_length=self.prediction_length,
|
639
|
+
prediction_length=self.prediction_length,
|
640
|
+
known_covariates_names=self.covariate_metadata.known_covariates,
|
640
641
|
)
|
641
642
|
logger.info(
|
642
643
|
"Additional data provided, testing on additional data. Resulting leaderboard "
|
@@ -813,7 +814,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
813
814
|
use_cache: bool = True,
|
814
815
|
) -> Dict[str, float]:
|
815
816
|
past_data, known_covariates = data.get_model_inputs_for_scoring(
|
816
|
-
prediction_length=self.prediction_length, known_covariates_names=self.
|
817
|
+
prediction_length=self.prediction_length, known_covariates_names=self.covariate_metadata.known_covariates
|
817
818
|
)
|
818
819
|
predictions = self.predict(data=past_data, known_covariates=known_covariates, model=model, use_cache=use_cache)
|
819
820
|
|
@@ -874,7 +875,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
874
875
|
)
|
875
876
|
|
876
877
|
importance_transform = importance_transform_type(
|
877
|
-
covariate_metadata=self.
|
878
|
+
covariate_metadata=self.covariate_metadata,
|
878
879
|
prediction_length=self.prediction_length,
|
879
880
|
random_seed=random_seed,
|
880
881
|
)
|
@@ -937,11 +938,11 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
937
938
|
"""Check if the given model uses the given feature."""
|
938
939
|
models_with_ancestors = set(self.get_minimum_model_set(model))
|
939
940
|
|
940
|
-
if feature in self.
|
941
|
+
if feature in self.covariate_metadata.static_features:
|
941
942
|
return any(self.load_model(m).supports_static_features for m in models_with_ancestors)
|
942
|
-
elif feature in self.
|
943
|
+
elif feature in self.covariate_metadata.known_covariates:
|
943
944
|
return any(self.load_model(m).supports_known_covariates for m in models_with_ancestors)
|
944
|
-
elif feature in self.
|
945
|
+
elif feature in self.covariate_metadata.past_covariates:
|
945
946
|
return any(self.load_model(m).supports_past_covariates for m in models_with_ancestors)
|
946
947
|
|
947
948
|
return False
|
@@ -1260,7 +1261,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
|
|
1260
1261
|
quantile_levels=self.quantile_levels,
|
1261
1262
|
all_assigned_names=self._get_banned_model_names(),
|
1262
1263
|
target=self.target,
|
1263
|
-
|
1264
|
+
covariate_metadata=self.covariate_metadata,
|
1264
1265
|
excluded_model_types=excluded_model_types,
|
1265
1266
|
# if skip_model_selection = True, we skip backtesting
|
1266
1267
|
multi_window=multi_window and not self.skip_model_selection,
|
@@ -1,8 +1,8 @@
|
|
1
1
|
import logging
|
2
2
|
import reprlib
|
3
3
|
import time
|
4
|
-
from dataclasses import dataclass, field
|
5
|
-
from typing import Any, List, Literal, Optional, Tuple
|
4
|
+
from dataclasses import asdict, dataclass, field
|
5
|
+
from typing import Any, Dict, List, Literal, Optional, Tuple
|
6
6
|
|
7
7
|
import numpy as np
|
8
8
|
import pandas as pd
|
@@ -67,6 +67,9 @@ class CovariateMetadata:
|
|
67
67
|
def all_features(self) -> List[str]:
|
68
68
|
return self.static_features + self.covariates
|
69
69
|
|
70
|
+
def to_dict(self) -> Dict[str, Any]:
|
71
|
+
return asdict(self)
|
72
|
+
|
70
73
|
|
71
74
|
class ContinuousAndCategoricalFeatureGenerator(PipelineFeatureGenerator):
|
72
75
|
"""Generates categorical and continuous features for time series models.
|
@@ -4,6 +4,7 @@ from typing import Optional
|
|
4
4
|
import numpy as np
|
5
5
|
import pandas as pd
|
6
6
|
|
7
|
+
from autogluon.common.utils.deprecated_utils import Deprecated
|
7
8
|
from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
|
8
9
|
|
9
10
|
|
@@ -18,20 +19,24 @@ def get_forecast_horizon_index_single_time_series(
|
|
18
19
|
return pd.date_range(start=start_ts, periods=prediction_length, freq=freq, name=TIMESTAMP)
|
19
20
|
|
20
21
|
|
21
|
-
|
22
|
-
|
22
|
+
@Deprecated(
|
23
|
+
min_version_to_warn="1.3", min_version_to_error="2.0", new="TimeSeriesPredictor.forecast_horizon_data_frame"
|
24
|
+
)
|
25
|
+
def get_forecast_horizon_index_ts_dataframe(*args, **kwargs) -> pd.MultiIndex:
|
26
|
+
return pd.MultiIndex.from_frame(make_future_data_frame(*args, **kwargs))
|
27
|
+
|
28
|
+
|
29
|
+
def make_future_data_frame(
|
23
30
|
ts_dataframe: TimeSeriesDataFrame,
|
24
31
|
prediction_length: int,
|
25
32
|
freq: Optional[str] = None,
|
26
|
-
) -> pd.
|
33
|
+
) -> pd.DataFrame:
|
27
34
|
"""For each item in the dataframe, get timestamps for the next `prediction_length` time steps into the future.
|
28
35
|
|
29
|
-
Returns a pandas.
|
30
|
-
- level 0 ("item_id") contains the same item_ids as the input ts_dataframe.
|
31
|
-
- level 1 ("timestamp") contains the next prediction_length time steps starting from the end of each time series.
|
36
|
+
Returns a pandas.DataFrame, with columns "item_id" and "timestamp" corresponding to the forecast horizon.
|
32
37
|
"""
|
33
38
|
last = ts_dataframe.reset_index()[[ITEMID, TIMESTAMP]].groupby(by=ITEMID, sort=False, as_index=False).last()
|
34
|
-
item_ids = np.repeat(last[ITEMID], prediction_length)
|
39
|
+
item_ids = np.repeat(last[ITEMID].to_numpy(), prediction_length)
|
35
40
|
|
36
41
|
if freq is None:
|
37
42
|
freq = ts_dataframe.freq
|
@@ -41,4 +46,4 @@ def get_forecast_horizon_index_ts_dataframe(
|
|
41
46
|
with warnings.catch_warnings():
|
42
47
|
warnings.simplefilter("ignore", category=pd.errors.PerformanceWarning)
|
43
48
|
timestamps = np.dstack([last_ts + step * offset for step in range(1, prediction_length + 1)]).ravel() # type: ignore[operator]
|
44
|
-
return pd.
|
49
|
+
return pd.DataFrame({ITEMID: item_ids, TIMESTAMP: timestamps})
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250418
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
59
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250418
|
59
|
+
Requires-Dist: autogluon.common==1.2.1b20250418
|
60
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250418
|
61
61
|
Provides-Extra: all
|
62
62
|
Provides-Extra: chronos-onnx
|
63
63
|
Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
|
@@ -1,33 +1,33 @@
|
|
1
|
-
autogluon.timeseries-1.2.
|
1
|
+
autogluon.timeseries-1.2.1b20250418-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
|
-
autogluon/timeseries/learner.py,sha256=
|
5
|
-
autogluon/timeseries/predictor.py,sha256=
|
6
|
-
autogluon/timeseries/regressor.py,sha256=
|
4
|
+
autogluon/timeseries/learner.py,sha256=7dqSHKCIX2osjv9cmWWLwaGvdrPvla0HTnsR75bdenY,14112
|
5
|
+
autogluon/timeseries/predictor.py,sha256=eklp1Qils6f4vIex8KhLD6nVsUQwZ6Jt9UKkTsSyErM,85739
|
6
|
+
autogluon/timeseries/regressor.py,sha256=xw5VPrXS-NQ_Ts4ppDjoNV0TdqUYjW4VINUtb_BZdiI,11868
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
|
-
autogluon/timeseries/trainer.py,sha256=
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
8
|
+
autogluon/timeseries/trainer.py,sha256=LHLaLvzOLjjwFHfKifydp5NOCLLv2nv2BJLerbeNWuU,57700
|
9
|
+
autogluon/timeseries/version.py,sha256=0zPPTGxy3-f1WXziWDw672VIyU_d25Uy_412DqQY6ww,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
13
13
|
autogluon/timeseries/dataset/ts_dataframe.py,sha256=SodnGhEA2V-hnfYHuAkH8rK4hQlLH8K5Tb6dsGapvPM,47161
|
14
14
|
autogluon/timeseries/metrics/__init__.py,sha256=dJCrZ2cHwqhqNctwQjwG-FHgGUmzIFT-D0z72f4RAVM,2104
|
15
|
-
autogluon/timeseries/metrics/abstract.py,sha256=
|
16
|
-
autogluon/timeseries/metrics/point.py,sha256=
|
17
|
-
autogluon/timeseries/metrics/quantile.py,sha256=
|
15
|
+
autogluon/timeseries/metrics/abstract.py,sha256=CHUZB6xt9oF9yijSOjgGtjLuKo2X0mT6dQDuwg4ZzpU,8192
|
16
|
+
autogluon/timeseries/metrics/point.py,sha256=2nlieQcPBCI9hXMT3v0Oe802ykZDuzvEtDpunzt0IVA,15785
|
17
|
+
autogluon/timeseries/metrics/quantile.py,sha256=wvFeDMvRf1mFurhvVr_7g13Kg-hKIRoW4y9t2no_e7A,3969
|
18
18
|
autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
|
19
19
|
autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
|
20
|
-
autogluon/timeseries/models/presets.py,sha256=
|
20
|
+
autogluon/timeseries/models/presets.py,sha256=BdSTW91-flgqhVNuZIvqEf7wUj1iB6BPger4tJaoAZQ,12322
|
21
21
|
autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
|
22
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
22
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=gGairH3JX5rMEWhSj6VYy6zu7isZ04IaIj4lDXaTc1E,30814
|
23
23
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
24
24
|
autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
26
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
26
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=QaQcImTXJpzl-afPqI4GUmJpGT3y6vUcsu_2xk2L87w,33050
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=CVvNun8DKH7UQGyXU-iO2xmvBIHRQElw72gIrZ7QjkU,2504
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
29
29
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
30
|
-
autogluon/timeseries/models/chronos/model.py,sha256=
|
30
|
+
autogluon/timeseries/models/chronos/model.py,sha256=9kKVUBCEdgQ176YM33tvcn3pQsEpv0_OLw7VK-Scxw8,31590
|
31
31
|
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
|
32
32
|
autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
|
33
33
|
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
|
@@ -37,33 +37,33 @@ autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQ
|
|
37
37
|
autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=LzL64JASiwkLsuFxGToXJGRItcMxq5_Ig2QP5Zm7SHw,3537
|
38
38
|
autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=v5A2xv4d_QynA1GWD7iqmn-VVEFpD88Oiswyp72yBCc,7321
|
39
39
|
autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1julnpeoKbv5ZNuAR6-DFgA,361
|
40
|
-
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=
|
40
|
+
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=35T8rty6sPGiaSFNpiVNmeseo1_qpn664UcWo92W5eI,32906
|
41
41
|
autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
42
|
-
autogluon/timeseries/models/gluonts/torch/models.py,sha256=
|
42
|
+
autogluon/timeseries/models/gluonts/torch/models.py,sha256=f7IicZzLAN2v_9y3Pxt9G6f48xIzmDjb1U5k44hS3O0,25760
|
43
43
|
autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
|
44
|
-
autogluon/timeseries/models/local/abstract_local_model.py,sha256=
|
45
|
-
autogluon/timeseries/models/local/naive.py,sha256=
|
44
|
+
autogluon/timeseries/models/local/abstract_local_model.py,sha256=2G_r6RCpH2Pf4PjcPL59SI44j0JuuexhurUI1sWJaSk,11950
|
45
|
+
autogluon/timeseries/models/local/naive.py,sha256=BhXxL52-_i4Xynx-spfZMkRejofFPpknggS35_aQSwc,7253
|
46
46
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
47
47
|
autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
|
48
48
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
49
|
-
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=
|
49
|
+
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=K8MYzQkTSiCllcjKZqqgYucUOxcAfZI9yd-BVke39Pk,11843
|
50
50
|
autogluon/timeseries/transforms/__init__.py,sha256=fkFc4Q1Dlh0vVRgO7nPD7BgNL9dOki8THPWFkfdIKkM,128
|
51
51
|
autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
|
52
52
|
autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
|
53
53
|
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
54
|
-
autogluon/timeseries/utils/features.py,sha256=
|
55
|
-
autogluon/timeseries/utils/forecast.py,sha256=
|
54
|
+
autogluon/timeseries/utils/features.py,sha256=IahkFgY3zzBqldrBtx4WTmxhUTb1CklZQA8RbTOzc48,22527
|
55
|
+
autogluon/timeseries/utils/forecast.py,sha256=vd0Y5YsHU6awu4E7xyDXQGe21P1aB26gwFsA3m09mKw,2197
|
56
56
|
autogluon/timeseries/utils/warning_filters.py,sha256=FyXvYW_ylULcZP4R9xNBxojKtvadW3uygXwHK_xHq5g,2522
|
57
57
|
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
58
58
|
autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
|
59
59
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
60
60
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
61
61
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
62
|
-
autogluon.timeseries-1.2.
|
63
|
-
autogluon.timeseries-1.2.
|
64
|
-
autogluon.timeseries-1.2.
|
65
|
-
autogluon.timeseries-1.2.
|
66
|
-
autogluon.timeseries-1.2.
|
67
|
-
autogluon.timeseries-1.2.
|
68
|
-
autogluon.timeseries-1.2.
|
69
|
-
autogluon.timeseries-1.2.
|
62
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
63
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/METADATA,sha256=APGmLiKlltBbrDtmiCm2lJ6i-7TCKOQ8fxDbAuuIKro,12687
|
64
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
65
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
66
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
67
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
69
|
+
autogluon.timeseries-1.2.1b20250418.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|