autogluon.timeseries 1.2.1b20250416__py3-none-any.whl → 1.2.1b20250418__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (28) hide show
  1. autogluon/timeseries/learner.py +8 -6
  2. autogluon/timeseries/metrics/abstract.py +1 -1
  3. autogluon/timeseries/metrics/point.py +4 -4
  4. autogluon/timeseries/metrics/quantile.py +2 -2
  5. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +123 -204
  6. autogluon/timeseries/models/autogluon_tabular/mlforecast.py +9 -9
  7. autogluon/timeseries/models/chronos/model.py +37 -30
  8. autogluon/timeseries/models/gluonts/abstract_gluonts.py +34 -30
  9. autogluon/timeseries/models/gluonts/torch/models.py +8 -8
  10. autogluon/timeseries/models/local/abstract_local_model.py +1 -1
  11. autogluon/timeseries/models/local/naive.py +2 -2
  12. autogluon/timeseries/models/multi_window/multi_window_model.py +0 -3
  13. autogluon/timeseries/models/presets.py +2 -2
  14. autogluon/timeseries/predictor.py +76 -59
  15. autogluon/timeseries/regressor.py +5 -4
  16. autogluon/timeseries/trainer.py +14 -13
  17. autogluon/timeseries/utils/features.py +5 -2
  18. autogluon/timeseries/utils/forecast.py +13 -8
  19. autogluon/timeseries/version.py +1 -1
  20. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/METADATA +4 -4
  21. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/RECORD +28 -28
  22. /autogluon.timeseries-1.2.1b20250416-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250418-py3.9-nspkg.pth +0 -0
  23. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/LICENSE +0 -0
  24. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/NOTICE +0 -0
  25. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/WHEEL +0 -0
  26. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/namespace_packages.txt +0 -0
  27. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/top_level.txt +0 -0
  28. {autogluon.timeseries-1.2.1b20250416.dist-info → autogluon.timeseries-1.2.1b20250418.dist-info}/zip-safe +0 -0
@@ -6,7 +6,7 @@ import numpy as np
6
6
  import pandas as pd
7
7
 
8
8
  from autogluon.core.models import AbstractModel
9
- from autogluon.tabular.trainer.model_presets.presets import MODEL_TYPES as TABULAR_MODEL_TYPES
9
+ from autogluon.tabular.register import ag_model_register as tabular_ag_model_register
10
10
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TimeSeriesDataFrame
11
11
  from autogluon.timeseries.utils.features import CovariateMetadata
12
12
 
@@ -85,12 +85,13 @@ class GlobalCovariateRegressor(CovariateRegressor):
85
85
  include_static_features: bool = True,
86
86
  include_item_id: bool = False,
87
87
  ):
88
- if model_name not in TABULAR_MODEL_TYPES:
88
+ tabular_model_types = tabular_ag_model_register.key_to_cls_map()
89
+ if model_name not in tabular_model_types:
89
90
  raise ValueError(
90
- f"Tabular model {model_name} not supported. Available models: {list(TABULAR_MODEL_TYPES)}"
91
+ f"Tabular model {model_name} not supported. Available models: {list(tabular_model_types)}"
91
92
  )
92
93
  self.target = target
93
- self.model_type = TABULAR_MODEL_TYPES[model_name]
94
+ self.model_type = tabular_model_types[model_name]
94
95
  self.model_name = model_name
95
96
  self.model_hyperparameters = model_hyperparameters or {}
96
97
  self.refit_during_predict = refit_during_predict
@@ -67,7 +67,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
67
67
  self.prediction_length = prediction_length
68
68
  self.quantile_levels = kwargs.get("quantile_levels", [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
69
69
  self.target = kwargs.get("target", "target")
70
- self.metadata = kwargs.get("metadata", CovariateMetadata())
70
+ self.covariate_metadata = kwargs.get("covariate_metadata", CovariateMetadata())
71
71
  self.is_data_saved = False
72
72
  self.skip_model_selection = skip_model_selection
73
73
  # Ensemble cannot be fit if val_scores are not computed
@@ -361,7 +361,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
361
361
  model.fit_time = model.fit_time or (fit_end_time - fit_start_time)
362
362
 
363
363
  if time_limit is not None:
364
- time_limit = fit_end_time - fit_start_time
364
+ time_limit = time_limit - (fit_end_time - fit_start_time)
365
365
  if val_data is not None and not self.skip_model_selection:
366
366
  model.score_and_cache_oof(
367
367
  val_data, store_val_score=True, store_predict_time=True, time_limit=time_limit
@@ -434,7 +434,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
434
434
  "When `skip_model_selection=True`, only a single model must be provided via `hyperparameters` "
435
435
  f"but {len(models)} models were given"
436
436
  )
437
- if contains_searchspace(models[0].get_user_params()):
437
+ if contains_searchspace(models[0].get_hyperparameters()):
438
438
  raise ValueError(
439
439
  "When `skip_model_selection=True`, model configuration should contain no search spaces."
440
440
  )
@@ -462,7 +462,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
462
462
  if random_seed is not None:
463
463
  seed_everything(random_seed + i)
464
464
 
465
- if contains_searchspace(model.get_user_params()):
465
+ if contains_searchspace(model.get_hyperparameters()):
466
466
  fit_log_message = f"Hyperparameter tuning model {model.name}. "
467
467
  if time_left is not None:
468
468
  fit_log_message += (
@@ -576,7 +576,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
576
576
  path=self.path,
577
577
  freq=data_per_window[0].freq,
578
578
  quantile_levels=self.quantile_levels,
579
- metadata=self.metadata,
579
+ covariate_metadata=self.covariate_metadata,
580
580
  )
581
581
  with warning_filter():
582
582
  ensemble.fit_ensemble(model_preds, data_per_window=data_per_window, time_limit=time_limit)
@@ -629,14 +629,15 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
629
629
  if isinstance(model, MultiWindowBacktestingModel):
630
630
  model = model.most_recent_model
631
631
  assert model is not None
632
- model_info[model_name]["hyperparameters"] = model.params
632
+ model_info[model_name]["hyperparameters"] = model.get_hyperparameters()
633
633
 
634
634
  if extra_metrics is None:
635
635
  extra_metrics = []
636
636
 
637
637
  if data is not None:
638
638
  past_data, known_covariates = data.get_model_inputs_for_scoring(
639
- prediction_length=self.prediction_length, known_covariates_names=self.metadata.known_covariates
639
+ prediction_length=self.prediction_length,
640
+ known_covariates_names=self.covariate_metadata.known_covariates,
640
641
  )
641
642
  logger.info(
642
643
  "Additional data provided, testing on additional data. Resulting leaderboard "
@@ -813,7 +814,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
813
814
  use_cache: bool = True,
814
815
  ) -> Dict[str, float]:
815
816
  past_data, known_covariates = data.get_model_inputs_for_scoring(
816
- prediction_length=self.prediction_length, known_covariates_names=self.metadata.known_covariates
817
+ prediction_length=self.prediction_length, known_covariates_names=self.covariate_metadata.known_covariates
817
818
  )
818
819
  predictions = self.predict(data=past_data, known_covariates=known_covariates, model=model, use_cache=use_cache)
819
820
 
@@ -874,7 +875,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
874
875
  )
875
876
 
876
877
  importance_transform = importance_transform_type(
877
- covariate_metadata=self.metadata,
878
+ covariate_metadata=self.covariate_metadata,
878
879
  prediction_length=self.prediction_length,
879
880
  random_seed=random_seed,
880
881
  )
@@ -937,11 +938,11 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
937
938
  """Check if the given model uses the given feature."""
938
939
  models_with_ancestors = set(self.get_minimum_model_set(model))
939
940
 
940
- if feature in self.metadata.static_features:
941
+ if feature in self.covariate_metadata.static_features:
941
942
  return any(self.load_model(m).supports_static_features for m in models_with_ancestors)
942
- elif feature in self.metadata.known_covariates:
943
+ elif feature in self.covariate_metadata.known_covariates:
943
944
  return any(self.load_model(m).supports_known_covariates for m in models_with_ancestors)
944
- elif feature in self.metadata.past_covariates:
945
+ elif feature in self.covariate_metadata.past_covariates:
945
946
  return any(self.load_model(m).supports_past_covariates for m in models_with_ancestors)
946
947
 
947
948
  return False
@@ -1260,7 +1261,7 @@ class TimeSeriesTrainer(AbstractTrainer[AbstractTimeSeriesModel]):
1260
1261
  quantile_levels=self.quantile_levels,
1261
1262
  all_assigned_names=self._get_banned_model_names(),
1262
1263
  target=self.target,
1263
- metadata=self.metadata,
1264
+ covariate_metadata=self.covariate_metadata,
1264
1265
  excluded_model_types=excluded_model_types,
1265
1266
  # if skip_model_selection = True, we skip backtesting
1266
1267
  multi_window=multi_window and not self.skip_model_selection,
@@ -1,8 +1,8 @@
1
1
  import logging
2
2
  import reprlib
3
3
  import time
4
- from dataclasses import dataclass, field
5
- from typing import Any, List, Literal, Optional, Tuple
4
+ from dataclasses import asdict, dataclass, field
5
+ from typing import Any, Dict, List, Literal, Optional, Tuple
6
6
 
7
7
  import numpy as np
8
8
  import pandas as pd
@@ -67,6 +67,9 @@ class CovariateMetadata:
67
67
  def all_features(self) -> List[str]:
68
68
  return self.static_features + self.covariates
69
69
 
70
+ def to_dict(self) -> Dict[str, Any]:
71
+ return asdict(self)
72
+
70
73
 
71
74
  class ContinuousAndCategoricalFeatureGenerator(PipelineFeatureGenerator):
72
75
  """Generates categorical and continuous features for time series models.
@@ -4,6 +4,7 @@ from typing import Optional
4
4
  import numpy as np
5
5
  import pandas as pd
6
6
 
7
+ from autogluon.common.utils.deprecated_utils import Deprecated
7
8
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
8
9
 
9
10
 
@@ -18,20 +19,24 @@ def get_forecast_horizon_index_single_time_series(
18
19
  return pd.date_range(start=start_ts, periods=prediction_length, freq=freq, name=TIMESTAMP)
19
20
 
20
21
 
21
- # TODO: Deprecate this method, add this functionality to `TimeSeriesPredictor`
22
- def get_forecast_horizon_index_ts_dataframe(
22
+ @Deprecated(
23
+ min_version_to_warn="1.3", min_version_to_error="2.0", new="TimeSeriesPredictor.forecast_horizon_data_frame"
24
+ )
25
+ def get_forecast_horizon_index_ts_dataframe(*args, **kwargs) -> pd.MultiIndex:
26
+ return pd.MultiIndex.from_frame(make_future_data_frame(*args, **kwargs))
27
+
28
+
29
+ def make_future_data_frame(
23
30
  ts_dataframe: TimeSeriesDataFrame,
24
31
  prediction_length: int,
25
32
  freq: Optional[str] = None,
26
- ) -> pd.MultiIndex:
33
+ ) -> pd.DataFrame:
27
34
  """For each item in the dataframe, get timestamps for the next `prediction_length` time steps into the future.
28
35
 
29
- Returns a pandas.MultiIndex, where
30
- - level 0 ("item_id") contains the same item_ids as the input ts_dataframe.
31
- - level 1 ("timestamp") contains the next prediction_length time steps starting from the end of each time series.
36
+ Returns a pandas.DataFrame, with columns "item_id" and "timestamp" corresponding to the forecast horizon.
32
37
  """
33
38
  last = ts_dataframe.reset_index()[[ITEMID, TIMESTAMP]].groupby(by=ITEMID, sort=False, as_index=False).last()
34
- item_ids = np.repeat(last[ITEMID], prediction_length)
39
+ item_ids = np.repeat(last[ITEMID].to_numpy(), prediction_length)
35
40
 
36
41
  if freq is None:
37
42
  freq = ts_dataframe.freq
@@ -41,4 +46,4 @@ def get_forecast_horizon_index_ts_dataframe(
41
46
  with warnings.catch_warnings():
42
47
  warnings.simplefilter("ignore", category=pd.errors.PerformanceWarning)
43
48
  timestamps = np.dstack([last_ts + step * offset for step in range(1, prediction_length + 1)]).ravel() # type: ignore[operator]
44
- return pd.MultiIndex.from_arrays([item_ids, timestamps], names=[ITEMID, TIMESTAMP])
49
+ return pd.DataFrame({ITEMID: item_ids, TIMESTAMP: timestamps})
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250416"
3
+ __version__ = "1.2.1b20250418"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20250416
3
+ Version: 1.2.1b20250418
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250416
59
- Requires-Dist: autogluon.common==1.2.1b20250416
60
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250416
58
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250418
59
+ Requires-Dist: autogluon.common==1.2.1b20250418
60
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250418
61
61
  Provides-Extra: all
62
62
  Provides-Extra: chronos-onnx
63
63
  Requires-Dist: optimum[onnxruntime]<1.23,>=1.17; extra == "chronos-onnx"
@@ -1,33 +1,33 @@
1
- autogluon.timeseries-1.2.1b20250416-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2.1b20250418-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
- autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
5
- autogluon/timeseries/predictor.py,sha256=DgKNvDfduVyauR7MXQZk04JyT3fc5erXAGVp3XOwDt4,85288
6
- autogluon/timeseries/regressor.py,sha256=3MlTpP-M1ayTZ52UQDK0wIMMFUijPep-iEyftlDdKPg,11804
4
+ autogluon/timeseries/learner.py,sha256=7dqSHKCIX2osjv9cmWWLwaGvdrPvla0HTnsR75bdenY,14112
5
+ autogluon/timeseries/predictor.py,sha256=eklp1Qils6f4vIex8KhLD6nVsUQwZ6Jt9UKkTsSyErM,85739
6
+ autogluon/timeseries/regressor.py,sha256=xw5VPrXS-NQ_Ts4ppDjoNV0TdqUYjW4VINUtb_BZdiI,11868
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
- autogluon/timeseries/trainer.py,sha256=EPKyWDpDnKK9ynUNKnnW_Zkg4UyPkxCUarIjngAFLWc,57525
9
- autogluon/timeseries/version.py,sha256=qRiT5RKmHqutDnkFPpmNCIubktJud5v6ljMK0Td-yh0,91
8
+ autogluon/timeseries/trainer.py,sha256=LHLaLvzOLjjwFHfKifydp5NOCLLv2nv2BJLerbeNWuU,57700
9
+ autogluon/timeseries/version.py,sha256=0zPPTGxy3-f1WXziWDw672VIyU_d25Uy_412DqQY6ww,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
13
13
  autogluon/timeseries/dataset/ts_dataframe.py,sha256=SodnGhEA2V-hnfYHuAkH8rK4hQlLH8K5Tb6dsGapvPM,47161
14
14
  autogluon/timeseries/metrics/__init__.py,sha256=dJCrZ2cHwqhqNctwQjwG-FHgGUmzIFT-D0z72f4RAVM,2104
15
- autogluon/timeseries/metrics/abstract.py,sha256=8IWEHU8Xt14sivmsX3iXASXCzn9fA0w9FLSca2zYvjI,8190
16
- autogluon/timeseries/metrics/point.py,sha256=g7L8jVUKc5YVjETZ-B7syK9nZswfKxLFlkN-rTbJdlg,15777
17
- autogluon/timeseries/metrics/quantile.py,sha256=eemdLbo3y2wstnVkuA-f55YXywctUmSW1EhIW4BsoH4,3965
15
+ autogluon/timeseries/metrics/abstract.py,sha256=CHUZB6xt9oF9yijSOjgGtjLuKo2X0mT6dQDuwg4ZzpU,8192
16
+ autogluon/timeseries/metrics/point.py,sha256=2nlieQcPBCI9hXMT3v0Oe802ykZDuzvEtDpunzt0IVA,15785
17
+ autogluon/timeseries/metrics/quantile.py,sha256=wvFeDMvRf1mFurhvVr_7g13Kg-hKIRoW4y9t2no_e7A,3969
18
18
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
19
19
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
20
- autogluon/timeseries/models/presets.py,sha256=qfpxoT3G3FEM2_P41nBfTXGNuLZTneCXAVa15guW5do,12292
20
+ autogluon/timeseries/models/presets.py,sha256=BdSTW91-flgqhVNuZIvqEf7wUj1iB6BPger4tJaoAZQ,12322
21
21
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
22
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=6Q9m3rQi2H1nMRbcn-Jl2D3MowwQUThjCaXgrwtF-IM,34749
22
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=gGairH3JX5rMEWhSj6VYy6zu7isZ04IaIj4lDXaTc1E,30814
23
23
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
24
24
  autogluon/timeseries/models/abstract/tunable.py,sha256=SFl4vjkb6BfFFaRPVdftnnLYlIyCThutLHxiiAlV6tY,7168
25
25
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
26
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=HGuV6_63TnBK9RqVD-VUTbbBuxQG9lmKxo5kLQLTlug,33016
26
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=QaQcImTXJpzl-afPqI4GUmJpGT3y6vUcsu_2xk2L87w,33050
27
27
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=CVvNun8DKH7UQGyXU-iO2xmvBIHRQElw72gIrZ7QjkU,2504
28
28
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
29
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
30
- autogluon/timeseries/models/chronos/model.py,sha256=mvCeh2fZH0WvLjU4x3rmICA40C1SvfkEF4XlPoo9OAM,31574
30
+ autogluon/timeseries/models/chronos/model.py,sha256=9kKVUBCEdgQ176YM33tvcn3pQsEpv0_OLw7VK-Scxw8,31590
31
31
  autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
32
32
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
33
33
  autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
@@ -37,33 +37,33 @@ autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQ
37
37
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=LzL64JASiwkLsuFxGToXJGRItcMxq5_Ig2QP5Zm7SHw,3537
38
38
  autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=v5A2xv4d_QynA1GWD7iqmn-VVEFpD88Oiswyp72yBCc,7321
39
39
  autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1julnpeoKbv5ZNuAR6-DFgA,361
40
- autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=WmLuPCmUqc_bxrH03Hf6cVreBilPHeUWZ6209PGNQnA,32587
40
+ autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=35T8rty6sPGiaSFNpiVNmeseo1_qpn664UcWo92W5eI,32906
41
41
  autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
- autogluon/timeseries/models/gluonts/torch/models.py,sha256=33glIsbgxrCfn4HUkaK4uX4QlVp1CmwU-6rYVKfM4AM,25688
42
+ autogluon/timeseries/models/gluonts/torch/models.py,sha256=f7IicZzLAN2v_9y3Pxt9G6f48xIzmDjb1U5k44hS3O0,25760
43
43
  autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
44
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=CYDvOXs7ZNzyz75gMOAKI1socB_qGep51FSPfzXMopA,11948
45
- autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
44
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=2G_r6RCpH2Pf4PjcPL59SI44j0JuuexhurUI1sWJaSk,11950
45
+ autogluon/timeseries/models/local/naive.py,sha256=BhXxL52-_i4Xynx-spfZMkRejofFPpknggS35_aQSwc,7253
46
46
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
47
47
  autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
48
48
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
49
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=SQ4imueYr6kYXR-2KT-GwiTl6U1AJv7ex8nPsPLNBpo,11932
49
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=K8MYzQkTSiCllcjKZqqgYucUOxcAfZI9yd-BVke39Pk,11843
50
50
  autogluon/timeseries/transforms/__init__.py,sha256=fkFc4Q1Dlh0vVRgO7nPD7BgNL9dOki8THPWFkfdIKkM,128
51
51
  autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
52
52
  autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
53
53
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
- autogluon/timeseries/utils/features.py,sha256=FYgcv_i5fFfxGOW86GLLrLanmaIpA2OXoMwUwvPsdkI,22443
55
- autogluon/timeseries/utils/forecast.py,sha256=kMeP2KxrlX5Gk31D2BesuVIc0F4hEahvAcFpJHgcWG4,2082
54
+ autogluon/timeseries/utils/features.py,sha256=IahkFgY3zzBqldrBtx4WTmxhUTb1CklZQA8RbTOzc48,22527
55
+ autogluon/timeseries/utils/forecast.py,sha256=vd0Y5YsHU6awu4E7xyDXQGe21P1aB26gwFsA3m09mKw,2197
56
56
  autogluon/timeseries/utils/warning_filters.py,sha256=FyXvYW_ylULcZP4R9xNBxojKtvadW3uygXwHK_xHq5g,2522
57
57
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
58
58
  autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
59
59
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
60
60
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
61
61
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
62
- autogluon.timeseries-1.2.1b20250416.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
- autogluon.timeseries-1.2.1b20250416.dist-info/METADATA,sha256=PH82SAp7O-A04SOQAy1iPUoLVvbarbpDBaW0BWqotHU,12687
64
- autogluon.timeseries-1.2.1b20250416.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
- autogluon.timeseries-1.2.1b20250416.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
66
- autogluon.timeseries-1.2.1b20250416.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
- autogluon.timeseries-1.2.1b20250416.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.2.1b20250416.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
- autogluon.timeseries-1.2.1b20250416.dist-info/RECORD,,
62
+ autogluon.timeseries-1.2.1b20250418.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
+ autogluon.timeseries-1.2.1b20250418.dist-info/METADATA,sha256=APGmLiKlltBbrDtmiCm2lJ6i-7TCKOQ8fxDbAuuIKro,12687
64
+ autogluon.timeseries-1.2.1b20250418.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
+ autogluon.timeseries-1.2.1b20250418.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
66
+ autogluon.timeseries-1.2.1b20250418.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
+ autogluon.timeseries-1.2.1b20250418.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.2.1b20250418.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
+ autogluon.timeseries-1.2.1b20250418.dist-info/RECORD,,