autogluon.timeseries 1.2.1b20250407__py3-none-any.whl → 1.2.1b20250409__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/chronos/model.py +6 -0
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +1 -1
- autogluon/timeseries/models/multi_window/multi_window_model.py +4 -2
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/METADATA +7 -7
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/RECORD +13 -13
- /autogluon.timeseries-1.2.1b20250407-py3.9-nspkg.pth → /autogluon.timeseries-1.2.1b20250409-py3.9-nspkg.pth +0 -0
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.2.1b20250407.dist-info → autogluon.timeseries-1.2.1b20250409.dist-info}/zip-safe +0 -0
@@ -408,6 +408,8 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
408
408
|
time_limit: Optional[int] = None,
|
409
409
|
**kwargs,
|
410
410
|
) -> None:
|
411
|
+
import transformers
|
412
|
+
from packaging import version
|
411
413
|
from transformers.trainer import PrinterCallback, Trainer, TrainingArguments
|
412
414
|
|
413
415
|
from .pipeline import ChronosBoltPipeline, ChronosPipeline
|
@@ -496,6 +498,10 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
496
498
|
fine_tune_trainer_kwargs["load_best_model_at_end"] = False
|
497
499
|
fine_tune_trainer_kwargs["metric_for_best_model"] = None
|
498
500
|
|
501
|
+
if version.parse(transformers.__version__) >= version.parse("4.46"):
|
502
|
+
# transformers changed the argument name from `evaluation_strategy` to `eval_strategy`
|
503
|
+
fine_tune_trainer_kwargs["eval_strategy"] = fine_tune_trainer_kwargs.pop("evaluation_strategy")
|
504
|
+
|
499
505
|
training_args = TrainingArguments(**fine_tune_trainer_kwargs, **pipeline_specific_trainer_kwargs)
|
500
506
|
tokenizer_train_dataset = ChronosFineTuningDataset(
|
501
507
|
target_df=train_data,
|
@@ -82,7 +82,7 @@ class InstanceNorm(nn.Module):
|
|
82
82
|
if loc_scale is None:
|
83
83
|
loc = torch.nan_to_num(torch.nanmean(x, dim=-1, keepdim=True), nan=0.0)
|
84
84
|
scale = torch.nan_to_num((x - loc).square().nanmean(dim=-1, keepdim=True).sqrt(), nan=1.0)
|
85
|
-
scale = torch.where(scale == 0,
|
85
|
+
scale = torch.where(scale == 0, self.eps, scale)
|
86
86
|
else:
|
87
87
|
loc, scale = loc_scale
|
88
88
|
|
@@ -218,9 +218,11 @@ class MultiWindowBacktestingModel(AbstractTimeSeriesModel):
|
|
218
218
|
def _get_search_space(self):
|
219
219
|
return self.model_base._get_search_space()
|
220
220
|
|
221
|
-
def
|
221
|
+
def _initialize_transforms_and_regressor(self, **kwargs) -> None:
|
222
222
|
# Do not initialize the target_scaler and covariate_regressor in the multi window model!
|
223
|
-
|
223
|
+
self.target_scaler = None
|
224
|
+
self.covariate_scaler = None
|
225
|
+
self.covariate_regressor = None
|
224
226
|
|
225
227
|
def _get_hpo_train_fn_kwargs(self, **train_fn_kwargs) -> dict:
|
226
228
|
train_fn_kwargs["is_bagged_model"] = True
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250409
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -40,11 +40,11 @@ Requires-Dist: joblib<2,>=1.1
|
|
40
40
|
Requires-Dist: numpy<2.1.4,>=1.25.0
|
41
41
|
Requires-Dist: scipy<1.16,>=1.5.4
|
42
42
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
43
|
-
Requires-Dist: torch<2.
|
44
|
-
Requires-Dist: lightning<2.
|
43
|
+
Requires-Dist: torch<2.7,>=2.2
|
44
|
+
Requires-Dist: lightning<2.7,>=2.2
|
45
45
|
Requires-Dist: pytorch-lightning
|
46
46
|
Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
|
47
|
-
Requires-Dist: accelerate<
|
47
|
+
Requires-Dist: accelerate<2.0,>=0.34.0
|
48
48
|
Requires-Dist: gluonts<0.17,>=0.15.0
|
49
49
|
Requires-Dist: networkx<4,>=3.0
|
50
50
|
Requires-Dist: statsforecast<2.0.1,>=1.7.0
|
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
|
|
55
55
|
Requires-Dist: tqdm<5,>=4.38
|
56
56
|
Requires-Dist: orjson~=3.9
|
57
57
|
Requires-Dist: tensorboard<3,>=2.9
|
58
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
59
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.
|
58
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250409
|
59
|
+
Requires-Dist: autogluon.common==1.2.1b20250409
|
60
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250409
|
61
61
|
Provides-Extra: all
|
62
62
|
Provides-Extra: chronos-onnx
|
63
63
|
Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
|
@@ -1,4 +1,4 @@
|
|
1
|
-
autogluon.timeseries-1.2.
|
1
|
+
autogluon.timeseries-1.2.1b20250409-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
|
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=DgKNvDfduVyauR7MXQZk04JyT3fc5erXAGVp3XO
|
|
6
6
|
autogluon/timeseries/regressor.py,sha256=3MlTpP-M1ayTZ52UQDK0wIMMFUijPep-iEyftlDdKPg,11804
|
7
7
|
autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
|
8
8
|
autogluon/timeseries/trainer.py,sha256=EPKyWDpDnKK9ynUNKnnW_Zkg4UyPkxCUarIjngAFLWc,57525
|
9
|
-
autogluon/timeseries/version.py,sha256=
|
9
|
+
autogluon/timeseries/version.py,sha256=A9BqrXhLrOJhH5qPbhMof-jLGxRS5nRGGDYPGWeziJE,91
|
10
10
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
11
11
|
autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
|
12
12
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -27,11 +27,11 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=HGuV6_63TnBK9
|
|
27
27
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=CVvNun8DKH7UQGyXU-iO2xmvBIHRQElw72gIrZ7QjkU,2504
|
28
28
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
29
29
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
30
|
-
autogluon/timeseries/models/chronos/model.py,sha256=
|
30
|
+
autogluon/timeseries/models/chronos/model.py,sha256=mvCeh2fZH0WvLjU4x3rmICA40C1SvfkEF4XlPoo9OAM,31574
|
31
31
|
autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
|
32
32
|
autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
|
33
33
|
autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
|
34
|
-
autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=
|
34
|
+
autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=kNIDesojKB3rbEK9jM8st4k7ZeaT6tz1znf4PsRDv2Q,20066
|
35
35
|
autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgfUc1iYowWPY84dnGN0uyqyHyQ,13131
|
36
36
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
|
37
37
|
autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=LzL64JASiwkLsuFxGToXJGRItcMxq5_Ig2QP5Zm7SHw,3537
|
@@ -46,7 +46,7 @@ autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F
|
|
46
46
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
47
47
|
autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
|
48
48
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
49
|
-
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=
|
49
|
+
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=SQ4imueYr6kYXR-2KT-GwiTl6U1AJv7ex8nPsPLNBpo,11932
|
50
50
|
autogluon/timeseries/transforms/__init__.py,sha256=fkFc4Q1Dlh0vVRgO7nPD7BgNL9dOki8THPWFkfdIKkM,128
|
51
51
|
autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
|
52
52
|
autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
|
@@ -59,11 +59,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
59
59
|
autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
|
60
60
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
|
61
61
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
|
62
|
-
autogluon.timeseries-1.2.
|
63
|
-
autogluon.timeseries-1.2.
|
64
|
-
autogluon.timeseries-1.2.
|
65
|
-
autogluon.timeseries-1.2.
|
66
|
-
autogluon.timeseries-1.2.
|
67
|
-
autogluon.timeseries-1.2.
|
68
|
-
autogluon.timeseries-1.2.
|
69
|
-
autogluon.timeseries-1.2.
|
62
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
63
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/METADATA,sha256=DQXakWBa5m-nrvesisdXWdlqX8ot5b7TtMV2MLO1TCc,12687
|
64
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
65
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
66
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
67
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
68
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
69
|
+
autogluon.timeseries-1.2.1b20250409.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|