autogluon.timeseries 1.2.1b20250407__py3-none-any.whl → 1.2.1b20250409__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -408,6 +408,8 @@ class ChronosModel(AbstractTimeSeriesModel):
408
408
  time_limit: Optional[int] = None,
409
409
  **kwargs,
410
410
  ) -> None:
411
+ import transformers
412
+ from packaging import version
411
413
  from transformers.trainer import PrinterCallback, Trainer, TrainingArguments
412
414
 
413
415
  from .pipeline import ChronosBoltPipeline, ChronosPipeline
@@ -496,6 +498,10 @@ class ChronosModel(AbstractTimeSeriesModel):
496
498
  fine_tune_trainer_kwargs["load_best_model_at_end"] = False
497
499
  fine_tune_trainer_kwargs["metric_for_best_model"] = None
498
500
 
501
+ if version.parse(transformers.__version__) >= version.parse("4.46"):
502
+ # transformers changed the argument name from `evaluation_strategy` to `eval_strategy`
503
+ fine_tune_trainer_kwargs["eval_strategy"] = fine_tune_trainer_kwargs.pop("evaluation_strategy")
504
+
499
505
  training_args = TrainingArguments(**fine_tune_trainer_kwargs, **pipeline_specific_trainer_kwargs)
500
506
  tokenizer_train_dataset = ChronosFineTuningDataset(
501
507
  target_df=train_data,
@@ -82,7 +82,7 @@ class InstanceNorm(nn.Module):
82
82
  if loc_scale is None:
83
83
  loc = torch.nan_to_num(torch.nanmean(x, dim=-1, keepdim=True), nan=0.0)
84
84
  scale = torch.nan_to_num((x - loc).square().nanmean(dim=-1, keepdim=True).sqrt(), nan=1.0)
85
- scale = torch.where(scale == 0, torch.abs(loc) + self.eps, scale)
85
+ scale = torch.where(scale == 0, self.eps, scale)
86
86
  else:
87
87
  loc, scale = loc_scale
88
88
 
@@ -218,9 +218,11 @@ class MultiWindowBacktestingModel(AbstractTimeSeriesModel):
218
218
  def _get_search_space(self):
219
219
  return self.model_base._get_search_space()
220
220
 
221
- def _initialize_covariate_regressor_scaler(self, **kwargs) -> None:
221
+ def _initialize_transforms_and_regressor(self, **kwargs) -> None:
222
222
  # Do not initialize the target_scaler and covariate_regressor in the multi window model!
223
- pass
223
+ self.target_scaler = None
224
+ self.covariate_scaler = None
225
+ self.covariate_regressor = None
224
226
 
225
227
  def _get_hpo_train_fn_kwargs(self, **train_fn_kwargs) -> dict:
226
228
  train_fn_kwargs["is_bagged_model"] = True
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250407"
3
+ __version__ = "1.2.1b20250409"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20250407
3
+ Version: 1.2.1b20250409
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,11 +40,11 @@ Requires-Dist: joblib<2,>=1.1
40
40
  Requires-Dist: numpy<2.1.4,>=1.25.0
41
41
  Requires-Dist: scipy<1.16,>=1.5.4
42
42
  Requires-Dist: pandas<2.3.0,>=2.0.0
43
- Requires-Dist: torch<2.6,>=2.2
44
- Requires-Dist: lightning<2.6,>=2.2
43
+ Requires-Dist: torch<2.7,>=2.2
44
+ Requires-Dist: lightning<2.7,>=2.2
45
45
  Requires-Dist: pytorch-lightning
46
46
  Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
47
- Requires-Dist: accelerate<1.0,>=0.34.0
47
+ Requires-Dist: accelerate<2.0,>=0.34.0
48
48
  Requires-Dist: gluonts<0.17,>=0.15.0
49
49
  Requires-Dist: networkx<4,>=3.0
50
50
  Requires-Dist: statsforecast<2.0.1,>=1.7.0
@@ -55,9 +55,9 @@ Requires-Dist: fugue>=0.9.0
55
55
  Requires-Dist: tqdm<5,>=4.38
56
56
  Requires-Dist: orjson~=3.9
57
57
  Requires-Dist: tensorboard<3,>=2.9
58
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250407
59
- Requires-Dist: autogluon.common==1.2.1b20250407
60
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250407
58
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250409
59
+ Requires-Dist: autogluon.common==1.2.1b20250409
60
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20250409
61
61
  Provides-Extra: all
62
62
  Provides-Extra: chronos-onnx
63
63
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
@@ -1,4 +1,4 @@
1
- autogluon.timeseries-1.2.1b20250407-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2.1b20250409-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=PDAHFlos6q5JukwRE86tKoH0zxYf3nLzy7qfD_a5NYY,13849
@@ -6,7 +6,7 @@ autogluon/timeseries/predictor.py,sha256=DgKNvDfduVyauR7MXQZk04JyT3fc5erXAGVp3XO
6
6
  autogluon/timeseries/regressor.py,sha256=3MlTpP-M1ayTZ52UQDK0wIMMFUijPep-iEyftlDdKPg,11804
7
7
  autogluon/timeseries/splitter.py,sha256=yzPca9p2bWV-_VJAptUyyzQsxu-uixAdpMoGQtDzMD4,3205
8
8
  autogluon/timeseries/trainer.py,sha256=EPKyWDpDnKK9ynUNKnnW_Zkg4UyPkxCUarIjngAFLWc,57525
9
- autogluon/timeseries/version.py,sha256=Hl84ugmOnqfU18pLVhKVOks3lzI2_-__H8uz6UWTQvY,91
9
+ autogluon/timeseries/version.py,sha256=A9BqrXhLrOJhH5qPbhMof-jLGxRS5nRGGDYPGWeziJE,91
10
10
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
11
11
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
12
12
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -27,11 +27,11 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=HGuV6_63TnBK9
27
27
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=CVvNun8DKH7UQGyXU-iO2xmvBIHRQElw72gIrZ7QjkU,2504
28
28
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
29
29
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
30
- autogluon/timeseries/models/chronos/model.py,sha256=ijupqg4S6kRxdJWanNt6bnyPoGAaJluUHHmZpyQrfDE,31211
30
+ autogluon/timeseries/models/chronos/model.py,sha256=mvCeh2fZH0WvLjU4x3rmICA40C1SvfkEF4XlPoo9OAM,31574
31
31
  autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
32
32
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=14OAKHmio6LmO4mVom2mPGB0CvIrOjMGJzb-MVSAq-s,5596
33
33
  autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=uFJLsSb2WQiSrmDZ0g2mO-lhTFUlq7vplGRBXZ9_VBk,22591
34
- autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=2MJuik-YFgONZ3X2DciAph5So6ABys5ppQhBC81gLyk,20083
34
+ autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=kNIDesojKB3rbEK9jM8st4k7ZeaT6tz1znf4PsRDv2Q,20066
35
35
  autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dtDX5Pyu95bGv7qmqgfUc1iYowWPY84dnGN0uyqyHyQ,13131
36
36
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
37
37
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=LzL64JASiwkLsuFxGToXJGRItcMxq5_Ig2QP5Zm7SHw,3537
@@ -46,7 +46,7 @@ autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F
46
46
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
47
47
  autogluon/timeseries/models/local/statsforecast.py,sha256=s3Byp7WAUy0Rnfl1qYMSIm44MKD9t8E732xuNLk_aao,32615
48
48
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
49
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=1WJfVUCmkf8DlZtIG5Hq6vPGKQ02YrpNXZEYLmiSskw,11836
49
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=SQ4imueYr6kYXR-2KT-GwiTl6U1AJv7ex8nPsPLNBpo,11932
50
50
  autogluon/timeseries/transforms/__init__.py,sha256=fkFc4Q1Dlh0vVRgO7nPD7BgNL9dOki8THPWFkfdIKkM,128
51
51
  autogluon/timeseries/transforms/covariate_scaler.py,sha256=G56PTHKqCFKiXRKLkLun7mN3-T09jxN-5oI1ISADJdQ,7042
52
52
  autogluon/timeseries/transforms/target_scaler.py,sha256=BeT1aP51Wq9EidxC0dVg6dHvampKafpG1uKu4ZaaJPs,6050
@@ -59,11 +59,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
59
59
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
60
60
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
61
61
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
62
- autogluon.timeseries-1.2.1b20250407.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
- autogluon.timeseries-1.2.1b20250407.dist-info/METADATA,sha256=7TjF3N-epmZ-TzNgsAordFY125rY1wwsbtZITr-PGlY,12687
64
- autogluon.timeseries-1.2.1b20250407.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
- autogluon.timeseries-1.2.1b20250407.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
66
- autogluon.timeseries-1.2.1b20250407.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
- autogluon.timeseries-1.2.1b20250407.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.2.1b20250407.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
- autogluon.timeseries-1.2.1b20250407.dist-info/RECORD,,
62
+ autogluon.timeseries-1.2.1b20250409.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
+ autogluon.timeseries-1.2.1b20250409.dist-info/METADATA,sha256=DQXakWBa5m-nrvesisdXWdlqX8ot5b7TtMV2MLO1TCc,12687
64
+ autogluon.timeseries-1.2.1b20250409.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
+ autogluon.timeseries-1.2.1b20250409.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
66
+ autogluon.timeseries-1.2.1b20250409.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
+ autogluon.timeseries-1.2.1b20250409.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.2.1b20250409.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
+ autogluon.timeseries-1.2.1b20250409.dist-info/RECORD,,