autogluon.timeseries 1.2.1b20241211__py3-none-any.whl → 1.2.1b20241212__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -501,8 +501,7 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
501
501
 
502
502
  - ``"fast_training"``: fit simple statistical models (``ETS``, ``Theta``, ``Naive``, ``SeasonalNaive``) + fast tree-based models ``RecursiveTabular``
503
503
  and ``DirectTabular``. These models are fast to train but may not be very accurate.
504
- - ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer`` + Chronos-Bolt (small). Default setting that produces good forecasts
505
- with reasonable training time.
504
+ - ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer`` + Chronos-Bolt (small). Produces good forecasts with reasonable training time.
506
505
  - ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``,
507
506
  ``DynamicOptimizedTheta``). Much more accurate than ``medium_quality``, but takes longer to train.
508
507
  - ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
@@ -512,7 +511,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
512
511
  - ``"bolt_{model_size}"``: where model size is one of ``tiny,mini,small,base``. Uses the Chronos-Bolt pretrained model for zero-shot forecasting.
513
512
  See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
514
513
 
515
- Available presets with the original `Chronos <https://github.com/amazon-science/chronos-forecasting>`_ model:
514
+ Available presets with the original `Chronos <https://github.com/amazon-science/chronos-forecasting>`_ model.
515
+ Note that as of v1.2 we recommend using the new, faster Chronos-Bolt models instead of the original Chronos models.
516
516
 
517
517
  - ``"chronos_{model_size}"``: where model size is one of ``tiny,mini,small,base,large``. Uses the Chronos pretrained model for zero-shot forecasting.
518
518
  See the documentation for ``ChronosModel`` or see `Hugging Face <https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444>`_ for more information.
@@ -875,6 +875,12 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
875
875
  This method measures the forecast accuracy using the last ``self.prediction_length`` time steps of each time
876
876
  series in ``data`` as a hold-out set.
877
877
 
878
+ .. note::
879
+ Metrics are always reported in 'higher is better' format.
880
+ This means that metrics such as MASE or MAPE will be multiplied by -1, so their values will be negative.
881
+ This is necessary to avoid the user needing to know the metric to understand if higher is better when
882
+ looking at the evaluation results.
883
+
878
884
  Parameters
879
885
  ----------
880
886
  data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]
@@ -1224,10 +1230,10 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1224
1230
  * ``score_val``: The validation score of the model using the internal validation data. Computed according to ``eval_metric``.
1225
1231
 
1226
1232
  .. note::
1227
- Metrics scores are always shown in 'higher is better' format.
1233
+ Metrics are always reported in 'higher is better' format.
1228
1234
  This means that metrics such as MASE or MAPE will be multiplied by -1, so their values will be negative.
1229
1235
  This is necessary to avoid the user needing to know the metric to understand if higher is better when
1230
- looking at leaderboard.
1236
+ looking at the leaderboard.
1231
1237
 
1232
1238
  * ``pred_time_val``: Time taken by the model to predict on the validation data set
1233
1239
  * ``fit_time_marginal``: The fit time required to train the model (ignoring base models for ensembles).
@@ -1429,16 +1435,18 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1429
1435
  trainer = self._trainer
1430
1436
  train_data = trainer.load_train_data()
1431
1437
  val_data = trainer.load_val_data()
1432
- base_models = trainer.get_model_names(level=0)
1438
+ base_model_names = trainer.get_model_names(level=0)
1433
1439
  pred_proba_dict_val: Dict[str, List[TimeSeriesDataFrame]] = {
1434
- model: trainer._get_model_oof_predictions(model) for model in base_models
1440
+ model_name: trainer._get_model_oof_predictions(model_name)
1441
+ for model_name in base_model_names
1442
+ if "_FULL" not in model_name
1435
1443
  }
1436
1444
 
1437
1445
  past_data, known_covariates = test_data.get_model_inputs_for_scoring(
1438
1446
  prediction_length=self.prediction_length, known_covariates_names=trainer.metadata.known_covariates
1439
1447
  )
1440
1448
  pred_proba_dict_test: Dict[str, TimeSeriesDataFrame] = trainer.get_model_pred_dict(
1441
- base_models, data=past_data, known_covariates=known_covariates
1449
+ base_model_names, data=past_data, known_covariates=known_covariates
1442
1450
  )
1443
1451
 
1444
1452
  y_val: List[TimeSeriesDataFrame] = [
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.2.1b20241211'
2
+ __version__ = '1.2.1b20241212'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.2.1b20241211
3
+ Version: 1.2.1b20241212
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -53,9 +53,9 @@ Requires-Dist: fugue>=0.9.0
53
53
  Requires-Dist: tqdm<5,>=4.38
54
54
  Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: tensorboard<3,>=2.9
56
- Requires-Dist: autogluon.core[raytune]==1.2.1b20241211
57
- Requires-Dist: autogluon.common==1.2.1b20241211
58
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20241211
56
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20241212
57
+ Requires-Dist: autogluon.common==1.2.1b20241212
58
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.2.1b20241212
59
59
  Provides-Extra: all
60
60
  Provides-Extra: chronos-onnx
61
61
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "chronos-onnx"
@@ -1,11 +1,11 @@
1
- autogluon.timeseries-1.2.1b20241211-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.2.1b20241212-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=mFnBC750C5PqgkkYNYni9oYQ5a6K8pXSsDLRDXuA7DI,14182
5
- autogluon/timeseries/predictor.py,sha256=W9RhTUS_WFMAR7BXiHIYblKHCvGlY8WRTfJJ2E0pBn0,85471
5
+ autogluon/timeseries/predictor.py,sha256=oPsZrvNnTIe1bBwryxRRNmxWu-RfD1XQz1gZd2Cja-o,86014
6
6
  autogluon/timeseries/regressor.py,sha256=tqQ2zWImxpuEyaAM0DeCjOZ-xcWUYZbCXsqd471xXxQ,8351
7
7
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
8
- autogluon/timeseries/version.py,sha256=v9MLe4aRRPmk2fbbFjXk3-PKtE8tBqNdTooR9FSoFqQ,90
8
+ autogluon/timeseries/version.py,sha256=qVMu1147rrn8S0bv4U8SgWjjj4QwLl5zwpakOXZjtrU,90
9
9
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
10
10
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
11
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=gQDk5_zmsY5DUWDUpSaCKYkQ9nHKKY-LsywJQRAoYSk,5988
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=YK_2k8hvYIMW-sJPnjGWRtCnvIOthwA2hATB3nwVoD4,834
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=MjLi3zQ00uWWJtXH9oGX2GJkTbvjdSiuabSa4kcVuxE,2672
63
- autogluon.timeseries-1.2.1b20241211.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.2.1b20241211.dist-info/METADATA,sha256=j6G38mebcPGy_PQROPgwi2vr1ilHbIRBglH7WWqgl5A,12566
65
- autogluon.timeseries-1.2.1b20241211.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.2.1b20241211.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
- autogluon.timeseries-1.2.1b20241211.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.2.1b20241211.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.2.1b20241211.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.2.1b20241211.dist-info/RECORD,,
63
+ autogluon.timeseries-1.2.1b20241212.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.2.1b20241212.dist-info/METADATA,sha256=cOaOFJW1LYXKxJObRwlG8x1ttUVt-Nvb1xbBLbqGEw4,12566
65
+ autogluon.timeseries-1.2.1b20241212.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.2.1b20241212.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.2.1b20241212.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.2.1b20241212.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.2.1b20241212.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.2.1b20241212.dist-info/RECORD,,