autogluon.timeseries 1.1.2b20241121__py3-none-any.whl → 1.1.2b20241123__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,7 @@
1
1
  import logging
2
2
  import os
3
3
  import shutil
4
+ import warnings
4
5
  from pathlib import Path
5
6
  from typing import Any, Dict, Literal, Optional, Union
6
7
 
@@ -15,6 +16,11 @@ from autogluon.timeseries.utils.warning_filters import disable_duplicate_logs, w
15
16
 
16
17
  logger = logging.getLogger("autogluon.timeseries.models.chronos")
17
18
 
19
+ # TODO: Replace `evaluation_strategy` with `eval_strategy` when upgrading to `transformers>=4.41` + remove warning filter
20
+ warnings.filterwarnings("ignore", category=FutureWarning, message="`evaluation_strategy` is deprecated")
21
+ # TODO: Remove warning filter when upgrading to `transformers>=4.40`
22
+ warnings.filterwarnings("ignore", category=FutureWarning, message="Passing the following arguments to ")
23
+
18
24
 
19
25
  # allowed HuggingFace model paths with custom parameter definitions
20
26
  MODEL_CONFIGS = {
@@ -104,7 +110,7 @@ class ChronosModel(AbstractTimeSeriesModel):
104
110
 
105
111
  Other Parameters
106
112
  ----------------
107
- model_path: str, default = "autogluon/chronos-t5-small"
113
+ model_path: str, default = "autogluon/chronos-bolt-small"
108
114
  Model path used for the model, i.e., a HuggingFace transformers ``name_or_path``. Can be a
109
115
  compatible model name on HuggingFace Hub or a local path to a model directory. Original
110
116
  Chronos models (i.e., ``autogluon/chronos-t5-{model_size}``) can be specified with aliases
@@ -140,8 +146,9 @@ class ChronosModel(AbstractTimeSeriesModel):
140
146
  for more information.
141
147
  fine_tune : bool, default = False
142
148
  If True, the pretrained model will be fine-tuned
143
- fine_tune_lr: float, default = 0.0001
144
- The learning rate used for fine-tuning
149
+ fine_tune_lr: float, default = 1e-5
150
+ The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for the original
151
+ Chronos models, we recommend using a higher learning rate such as ``1e-4``
145
152
  fine_tune_steps : int, default = 1000
146
153
  The number of gradient update steps to fine-tune for
147
154
  fine_tune_batch_size : int, default = 32
@@ -163,7 +170,7 @@ class ChronosModel(AbstractTimeSeriesModel):
163
170
 
164
171
  # default number of samples for prediction
165
172
  default_num_samples: int = 20
166
- default_model_path = "autogluon/chronos-t5-small"
173
+ default_model_path = "autogluon/chronos-bolt-small"
167
174
  default_max_time_limit_ratio = 0.8
168
175
  maximum_context_length = 2048
169
176
  fine_tuned_ckpt_name: str = "fine-tuned-ckpt"
@@ -198,7 +205,7 @@ class ChronosModel(AbstractTimeSeriesModel):
198
205
  self.context_length = hyperparameters.get("context_length")
199
206
 
200
207
  if self.context_length is not None and self.context_length > self.maximum_context_length:
201
- logger.warning(
208
+ logger.info(
202
209
  f"\tContext length {self.context_length} exceeds maximum context length {self.maximum_context_length}."
203
210
  f"Context length will be set to {self.maximum_context_length}."
204
211
  )
@@ -321,7 +328,7 @@ class ChronosModel(AbstractTimeSeriesModel):
321
328
 
322
329
  init_args.setdefault("fine_tune", False)
323
330
  init_args.setdefault("keep_transformers_logs", False)
324
- init_args.setdefault("fine_tune_lr", 1e-4)
331
+ init_args.setdefault("fine_tune_lr", 1e-5)
325
332
  init_args.setdefault("fine_tune_steps", 1000)
326
333
  init_args.setdefault("fine_tune_batch_size", 32)
327
334
  init_args.setdefault("eval_during_fine_tune", False)
@@ -341,6 +348,7 @@ class ChronosModel(AbstractTimeSeriesModel):
341
348
  logging_dir=str(output_dir),
342
349
  logging_strategy="steps",
343
350
  logging_steps=100,
351
+ disable_tqdm=True,
344
352
  report_to="none",
345
353
  max_steps=init_args["fine_tune_steps"],
346
354
  gradient_accumulation_steps=1,
@@ -434,7 +442,6 @@ class ChronosModel(AbstractTimeSeriesModel):
434
442
  )
435
443
 
436
444
  fine_tune_trainer_kwargs = fine_tune_args["fine_tune_trainer_kwargs"]
437
- fine_tune_trainer_kwargs["disable_tqdm"] = fine_tune_trainer_kwargs.get("disable_tqdm", (verbosity < 3))
438
445
  fine_tune_trainer_kwargs["use_cpu"] = str(self.model_pipeline.inner_model.device) == "cpu"
439
446
 
440
447
  if fine_tune_trainer_kwargs["use_cpu"]:
@@ -317,7 +317,7 @@ class TimeLimitCallback(TrainerCallback):
317
317
  def on_step_end(self, args, state, control, **kwargs):
318
318
  elapsed_time = time.monotonic() - self.start_time
319
319
  if elapsed_time > self.time_limit:
320
- logger.info("\tStopping fine-tuning since time_limit is reached")
320
+ logger.log(15, "Stopping fine-tuning since time_limit is reached")
321
321
  control.should_training_stop = True
322
322
 
323
323
 
@@ -145,7 +145,6 @@ def get_default_hps(key):
145
145
  },
146
146
  "default": {
147
147
  "SeasonalNaive": {},
148
- "Croston": {},
149
148
  "AutoETS": {},
150
149
  "NPTS": {},
151
150
  "DynamicOptimizedTheta": {},
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241121'
2
+ __version__ = '1.1.2b20241123'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241121
3
+ Version: 1.1.2b20241123
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -35,15 +35,15 @@ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
35
  Requires-Python: >=3.9, <3.13
36
36
  Description-Content-Type: text/markdown
37
37
  Requires-Dist: joblib<2,>=1.1
38
- Requires-Dist: numpy<1.29,>=1.21
39
- Requires-Dist: scipy<1.13,>=1.5.4
38
+ Requires-Dist: numpy<2.1.4,>=1.25.0
39
+ Requires-Dist: scipy<1.16,>=1.5.4
40
40
  Requires-Dist: pandas<2.3.0,>=2.0.0
41
41
  Requires-Dist: torch<2.6,>=2.2
42
42
  Requires-Dist: lightning<2.6,>=2.2
43
43
  Requires-Dist: pytorch-lightning
44
44
  Requires-Dist: transformers[sentencepiece]<5,>=4.38.0
45
45
  Requires-Dist: accelerate<1.0,>=0.32.0
46
- Requires-Dist: gluonts==0.16.0
46
+ Requires-Dist: gluonts<0.17,>=0.15.0
47
47
  Requires-Dist: networkx<4,>=3.0
48
48
  Requires-Dist: statsforecast<1.8,>=1.7.0
49
49
  Requires-Dist: mlforecast==0.13.4
@@ -53,9 +53,9 @@ Requires-Dist: fugue>=0.9.0
53
53
  Requires-Dist: tqdm<5,>=4.38
54
54
  Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: tensorboard<3,>=2.9
56
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241121
57
- Requires-Dist: autogluon.common==1.1.2b20241121
58
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241121
56
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20241123
57
+ Requires-Dist: autogluon.common==1.1.2b20241123
58
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241123
59
59
  Provides-Extra: all
60
60
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "all"
61
61
  Provides-Extra: chronos-onnx
@@ -1,11 +1,11 @@
1
- autogluon.timeseries-1.1.2b20241121-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20241123-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=mFnBC750C5PqgkkYNYni9oYQ5a6K8pXSsDLRDXuA7DI,14182
5
5
  autogluon/timeseries/predictor.py,sha256=EsJAkzlEkCFxYO55BTfjlaJPNwQwnS6yyj5nXjMr3XQ,85003
6
6
  autogluon/timeseries/regressor.py,sha256=tqQ2zWImxpuEyaAM0DeCjOZ-xcWUYZbCXsqd471xXxQ,8351
7
7
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
8
- autogluon/timeseries/version.py,sha256=5pdrFks0lfiEaMYBllEvk2rSws63pWwiDMSnsCdKbgk,90
8
+ autogluon/timeseries/version.py,sha256=Uw4ihPcz-ROHAaOD4_1aKoi-vhViU2s9HiM3pGEv4Bw,90
9
9
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
10
10
  autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
11
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -16,7 +16,7 @@ autogluon/timeseries/metrics/point.py,sha256=b19Ed4dS_ROdkrOZIik_Q3-8deCN9IQSZXt
16
16
  autogluon/timeseries/metrics/quantile.py,sha256=eemdLbo3y2wstnVkuA-f55YXywctUmSW1EhIW4BsoH4,3965
17
17
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
18
18
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
19
- autogluon/timeseries/models/presets.py,sha256=cRboVn7MRC6XgHyzL2iZRCF6T-jKU6DPth-x_x_6MRk,12473
19
+ autogluon/timeseries/models/presets.py,sha256=25HfBMhhzO_R-mpQSfBlpKEXOzkS0P7EZh16ipwXANE,12446
20
20
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
21
21
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=82lg2odAxzyhM3dkV3Msqv8AeYLILnnk-UvNnYobzFA,30628
22
22
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
@@ -25,12 +25,12 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=vfWXLdxYlbzjK
25
25
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XVoy8KpvoeX38lHHAXq4Be9LCxKjxZ36SOFeSAICRFM,2524
26
26
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
27
27
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
28
- autogluon/timeseries/models/chronos/model.py,sha256=PCf32pzxg3zGbP8DMjJC3cgc8GDdt2dhVHEzc18SVrM,29100
28
+ autogluon/timeseries/models/chronos/model.py,sha256=UEw_TGeHmS-_mhGSQevwRJC0TqlNBlmGCWJaiMyhwNU,29582
29
29
  autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
30
30
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=HlWQTS5q7UMzwbA5Pmg_N01AxuGfTf2tP5xq2jgavqI,5549
31
31
  autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=doAaWbrfNilkP9ORtjDnL-1S5ge4sOKhzGN-mgsY2bM,22158
32
32
  autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=2MJuik-YFgONZ3X2DciAph5So6ABys5ppQhBC81gLyk,20083
33
- autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=hw4QbRy81V9Jkndda9p_KgO9CrtYKbNq5kp0r8m0Rek,13133
33
+ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=dENQLSN6dumLrTGQ6sbJMq45irdDFOoCarAnWpTbLjk,13134
34
34
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
35
35
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
36
36
  autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=5HvZuW5osgsZg3V69k82nKEOy_YgeH1JTfQa7F3cU7s,7220
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
63
- autogluon.timeseries-1.1.2b20241121.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.1.2b20241121.dist-info/METADATA,sha256=LzaeFjdcpiA6u7x_i-SbRjpY2_IyBc8XuLv6X1Iiztg,12388
65
- autogluon.timeseries-1.1.2b20241121.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.1.2b20241121.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
67
- autogluon.timeseries-1.1.2b20241121.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.1.2b20241121.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.1.2b20241121.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.1.2b20241121.dist-info/RECORD,,
63
+ autogluon.timeseries-1.1.2b20241123.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.1.2b20241123.dist-info/METADATA,sha256=OJFO-uQFZvp1tDBuehznT3edZsmHvkb7NDSgGYhAdxA,12397
65
+ autogluon.timeseries-1.1.2b20241123.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.1.2b20241123.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
67
+ autogluon.timeseries-1.1.2b20241123.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.1.2b20241123.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.1.2b20241123.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.1.2b20241123.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.0)
2
+ Generator: bdist_wheel (0.45.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5