autogluon.timeseries 1.1.2b20241120__py3-none-any.whl → 1.1.2b20241122__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -12,19 +12,19 @@ TIMESERIES_PRESETS_CONFIGS = dict(
12
12
  fast_training={"hyperparameters": "very_light"},
13
13
  # Chronos-Bolt models
14
14
  bolt_tiny={
15
- "hyperparameters": {"Chronos": {"model_path": "bolt-tiny"}},
15
+ "hyperparameters": {"Chronos": {"model_path": "bolt_tiny"}},
16
16
  "skip_model_selection": True,
17
17
  },
18
18
  bolt_mini={
19
- "hyperparameters": {"Chronos": {"model_path": "bolt-mini"}},
19
+ "hyperparameters": {"Chronos": {"model_path": "bolt_mini"}},
20
20
  "skip_model_selection": True,
21
21
  },
22
22
  bolt_small={
23
- "hyperparameters": {"Chronos": {"model_path": "bolt-small"}},
23
+ "hyperparameters": {"Chronos": {"model_path": "bolt_small"}},
24
24
  "skip_model_selection": True,
25
25
  },
26
26
  bolt_base={
27
- "hyperparameters": {"Chronos": {"model_path": "bolt-base"}},
27
+ "hyperparameters": {"Chronos": {"model_path": "bolt_base"}},
28
28
  "skip_model_selection": True,
29
29
  },
30
30
  # Original Chronos models
@@ -67,10 +67,10 @@ MODEL_ALIASES = {
67
67
  "small": "autogluon/chronos-t5-small",
68
68
  "base": "autogluon/chronos-t5-base",
69
69
  "large": "autogluon/chronos-t5-large",
70
- "bolt-tiny": "autogluon/chronos-bolt-tiny",
71
- "bolt-mini": "autogluon/chronos-bolt-mini",
72
- "bolt-small": "autogluon/chronos-bolt-small",
73
- "bolt-base": "autogluon/chronos-bolt-base",
70
+ "bolt_tiny": "autogluon/chronos-bolt-tiny",
71
+ "bolt_mini": "autogluon/chronos-bolt-mini",
72
+ "bolt_small": "autogluon/chronos-bolt-small",
73
+ "bolt_base": "autogluon/chronos-bolt-base",
74
74
  }
75
75
 
76
76
 
@@ -109,7 +109,7 @@ class ChronosModel(AbstractTimeSeriesModel):
109
109
  compatible model name on HuggingFace Hub or a local path to a model directory. Original
110
110
  Chronos models (i.e., ``autogluon/chronos-t5-{model_size}``) can be specified with aliases
111
111
  ``tiny``, ``mini`` , ``small``, ``base``, and ``large``. Chronos-Bolt models can be specified
112
- with ``bolt-mini``, ``bolt-small``, and ``bolt-base``.
112
+ with ``bolt_tiny``, ``bolt_mini``, ``bolt_small``, and ``bolt_base``.
113
113
  batch_size : int, default = 16
114
114
  Size of batches used during inference
115
115
  num_samples : int, default = 20
@@ -140,8 +140,9 @@ class ChronosModel(AbstractTimeSeriesModel):
140
140
  for more information.
141
141
  fine_tune : bool, default = False
142
142
  If True, the pretrained model will be fine-tuned
143
- fine_tune_lr: float, default = 0.0001
144
- The learning rate used for fine-tuning
143
+ fine_tune_lr: float, default = 1e-5
144
+ The learning rate used for fine-tuning. This default is suitable for Chronos-Bolt models; for the original
145
+ Chronos models, we recommend using a higher learning rate such as ``1e-4``
145
146
  fine_tune_steps : int, default = 1000
146
147
  The number of gradient update steps to fine-tune for
147
148
  fine_tune_batch_size : int, default = 32
@@ -321,7 +322,7 @@ class ChronosModel(AbstractTimeSeriesModel):
321
322
 
322
323
  init_args.setdefault("fine_tune", False)
323
324
  init_args.setdefault("keep_transformers_logs", False)
324
- init_args.setdefault("fine_tune_lr", 1e-4)
325
+ init_args.setdefault("fine_tune_lr", 1e-5)
325
326
  init_args.setdefault("fine_tune_steps", 1000)
326
327
  init_args.setdefault("fine_tune_batch_size", 32)
327
328
  init_args.setdefault("eval_during_fine_tune", False)
@@ -134,7 +134,7 @@ def get_default_hps(key):
134
134
  "RecursiveTabular": {},
135
135
  "DirectTabular": {},
136
136
  "TemporalFusionTransformer": {},
137
- "Chronos": {"model_path": "bolt-small"},
137
+ "Chronos": {"model_path": "bolt_small"},
138
138
  },
139
139
  "light_inference": {
140
140
  "SeasonalNaive": {},
@@ -157,11 +157,11 @@ def get_default_hps(key):
157
157
  "Chronos": [
158
158
  {
159
159
  "ag_args": {"name_suffix": "ZeroShot"},
160
- "model_path": "bolt-base",
160
+ "model_path": "bolt_base",
161
161
  },
162
162
  {
163
163
  "ag_args": {"name_suffix": "FineTuned"},
164
- "model_path": "bolt-small",
164
+ "model_path": "bolt_small",
165
165
  "fine_tune": True,
166
166
  "target_scaler": "standard",
167
167
  "covariate_regressor": {"model_name": "CAT", "model_hyperparameters": {"iterations": 1_000}},
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241120'
2
+ __version__ = '1.1.2b20241122'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241120
3
+ Version: 1.1.2b20241122
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -35,15 +35,15 @@ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
35
  Requires-Python: >=3.9, <3.13
36
36
  Description-Content-Type: text/markdown
37
37
  Requires-Dist: joblib<2,>=1.1
38
- Requires-Dist: numpy<1.29,>=1.21
39
- Requires-Dist: scipy<1.13,>=1.5.4
38
+ Requires-Dist: numpy<2.1.4,>=1.25.0
39
+ Requires-Dist: scipy<1.16,>=1.5.4
40
40
  Requires-Dist: pandas<2.3.0,>=2.0.0
41
41
  Requires-Dist: torch<2.6,>=2.2
42
42
  Requires-Dist: lightning<2.6,>=2.2
43
43
  Requires-Dist: pytorch-lightning
44
44
  Requires-Dist: transformers[sentencepiece]<5,>=4.38.0
45
45
  Requires-Dist: accelerate<1.0,>=0.32.0
46
- Requires-Dist: gluonts==0.16.0
46
+ Requires-Dist: gluonts<0.17,>=0.15.0
47
47
  Requires-Dist: networkx<4,>=3.0
48
48
  Requires-Dist: statsforecast<1.8,>=1.7.0
49
49
  Requires-Dist: mlforecast==0.13.4
@@ -53,9 +53,9 @@ Requires-Dist: fugue>=0.9.0
53
53
  Requires-Dist: tqdm<5,>=4.38
54
54
  Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: tensorboard<3,>=2.9
56
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241120
57
- Requires-Dist: autogluon.common==1.1.2b20241120
58
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241120
56
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20241122
57
+ Requires-Dist: autogluon.common==1.1.2b20241122
58
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241122
59
59
  Provides-Extra: all
60
60
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "all"
61
61
  Provides-Extra: chronos-onnx
@@ -1,13 +1,13 @@
1
- autogluon.timeseries-1.1.2b20241120-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20241122-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=mFnBC750C5PqgkkYNYni9oYQ5a6K8pXSsDLRDXuA7DI,14182
5
5
  autogluon/timeseries/predictor.py,sha256=EsJAkzlEkCFxYO55BTfjlaJPNwQwnS6yyj5nXjMr3XQ,85003
6
6
  autogluon/timeseries/regressor.py,sha256=tqQ2zWImxpuEyaAM0DeCjOZ-xcWUYZbCXsqd471xXxQ,8351
7
7
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
8
- autogluon/timeseries/version.py,sha256=t6TdlyVVjsI-etjHY5tqRoGECcEKxWQwAjz-UboJ0sE,90
8
+ autogluon/timeseries/version.py,sha256=HrqztH5NdihgPm4J8swToGzmYqoQTkpSv8fWpyc0_HE,90
9
9
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
10
- autogluon/timeseries/configs/presets_configs.py,sha256=k5RRP0DQMa2Xq2oWAbRKouWUH8xUuBx2tIWk-we6_I8,2543
10
+ autogluon/timeseries/configs/presets_configs.py,sha256=cLat8ecLlWrI-SC5KLBDCX2SbVXaucemy2pjxJAtSY0,2543
11
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
12
  autogluon/timeseries/dataset/ts_dataframe.py,sha256=9bJQeg3HkPeVnyxzwqAJiTJGYXths7vxUV_3-OsJ6pk,48640
13
13
  autogluon/timeseries/metrics/__init__.py,sha256=LLGmYaexsx7CregV-QaHc5exjZbsJfBSVOtxHRGC0ho,2139
@@ -16,7 +16,7 @@ autogluon/timeseries/metrics/point.py,sha256=b19Ed4dS_ROdkrOZIik_Q3-8deCN9IQSZXt
16
16
  autogluon/timeseries/metrics/quantile.py,sha256=eemdLbo3y2wstnVkuA-f55YXywctUmSW1EhIW4BsoH4,3965
17
17
  autogluon/timeseries/metrics/utils.py,sha256=HuDe1BNe8yJU4f_DKM913nNrUueoRaw6zhxm1-S20s0,910
18
18
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
19
- autogluon/timeseries/models/presets.py,sha256=toZePXy1UYKIoQFQnXUIdhZuq7DBNMyfsYU_FwV94Nk,12473
19
+ autogluon/timeseries/models/presets.py,sha256=cRboVn7MRC6XgHyzL2iZRCF6T-jKU6DPth-x_x_6MRk,12473
20
20
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
21
21
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=82lg2odAxzyhM3dkV3Msqv8AeYLILnnk-UvNnYobzFA,30628
22
22
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
@@ -25,7 +25,7 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=vfWXLdxYlbzjK
25
25
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=XVoy8KpvoeX38lHHAXq4Be9LCxKjxZ36SOFeSAICRFM,2524
26
26
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
27
27
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
28
- autogluon/timeseries/models/chronos/model.py,sha256=krsF5Fu-Q_FYTW-WbeXX4--s1ZH5kY-LlxvZg2jvfT0,29085
28
+ autogluon/timeseries/models/chronos/model.py,sha256=GGaipPiwMBbdwNDwbLdoLeg-8E7in5QVHtbosU8QCWI,29249
29
29
  autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
30
30
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=HlWQTS5q7UMzwbA5Pmg_N01AxuGfTf2tP5xq2jgavqI,5549
31
31
  autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=doAaWbrfNilkP9ORtjDnL-1S5ge4sOKhzGN-mgsY2bM,22158
@@ -60,11 +60,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
60
60
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
61
61
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
62
62
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
63
- autogluon.timeseries-1.1.2b20241120.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
- autogluon.timeseries-1.1.2b20241120.dist-info/METADATA,sha256=gf3xf53SAhlU4E2tfn_mQ9Fj5aclpX1ZXczq6_6ABRk,12388
65
- autogluon.timeseries-1.1.2b20241120.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
- autogluon.timeseries-1.1.2b20241120.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
67
- autogluon.timeseries-1.1.2b20241120.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.1.2b20241120.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
- autogluon.timeseries-1.1.2b20241120.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
- autogluon.timeseries-1.1.2b20241120.dist-info/RECORD,,
63
+ autogluon.timeseries-1.1.2b20241122.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
64
+ autogluon.timeseries-1.1.2b20241122.dist-info/METADATA,sha256=tpxBIzCdPJ6K09gCV8rrndenaYmYaN6LvvzempvvEDI,12397
65
+ autogluon.timeseries-1.1.2b20241122.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
66
+ autogluon.timeseries-1.1.2b20241122.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
67
+ autogluon.timeseries-1.1.2b20241122.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.1.2b20241122.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
69
+ autogluon.timeseries-1.1.2b20241122.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
70
+ autogluon.timeseries-1.1.2b20241122.dist-info/RECORD,,