autogluon.timeseries 1.1.2b20241114__py3-none-any.whl → 1.1.2b20241115__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1067,3 +1067,7 @@ class TimeSeriesDataFrame(pd.DataFrame, TimeSeriesDataFrameDeprecatedMixin):
1067
1067
  # This hides method from IPython autocomplete, but not VSCode autocomplete
1068
1068
  deprecated = ["get_reindexed_view", "to_regular_index"]
1069
1069
  return [d for d in super().__dir__() if d not in deprecated]
1070
+
1071
+ def to_data_frame(self) -> pd.DataFrame:
1072
+ """Convert `TimeSeriesDataFrame` to a `pandas.DataFrame`"""
1073
+ return pd.DataFrame(self)
@@ -435,6 +435,12 @@ class ChronosModel(AbstractTimeSeriesModel):
435
435
  fine_tune_trainer_kwargs = fine_tune_args["fine_tune_trainer_kwargs"]
436
436
  fine_tune_trainer_kwargs["disable_tqdm"] = fine_tune_trainer_kwargs.get("disable_tqdm", (verbosity < 3))
437
437
  fine_tune_trainer_kwargs["use_cpu"] = str(self.model_pipeline.inner_model.device) == "cpu"
438
+
439
+ # TODO: adamw_torch_fused is not supported on CPU in torch <= 2.3. When torch 2.4 becomes the lower bound
440
+ # this if block can be removed because torch >= 2.4 supports AdamW optimizer with fused=True on CPU
441
+ if fine_tune_trainer_kwargs["use_cpu"] and fine_tune_trainer_kwargs["optim"] == "adamw_torch_fused":
442
+ fine_tune_trainer_kwargs["optim"] = "adamw_torch"
443
+
438
444
  output_dir = Path(fine_tune_trainer_kwargs["output_dir"])
439
445
 
440
446
  if not eval_during_fine_tune:
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241114'
2
+ __version__ = '1.1.2b20241115'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241114
3
+ Version: 1.1.2b20241115
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -53,9 +53,9 @@ Requires-Dist: fugue>=0.9.0
53
53
  Requires-Dist: tqdm<5,>=4.38
54
54
  Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: tensorboard<3,>=2.9
56
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241114
57
- Requires-Dist: autogluon.common==1.1.2b20241114
58
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241114
56
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20241115
57
+ Requires-Dist: autogluon.common==1.1.2b20241115
58
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241115
59
59
  Provides-Extra: all
60
60
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "all"
61
61
  Provides-Extra: chronos-onnx
@@ -1,15 +1,15 @@
1
- autogluon.timeseries-1.1.2b20241114-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20241115-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=3dUxI-U6TGfNtRQUzWTvBIo1GKeXYOhxIX_q7Fed9eA,14013
5
5
  autogluon/timeseries/predictor.py,sha256=R9m-TYmlA4WoJbdYEL_AnEM26EhRIclynOfSmpO7mBk,84926
6
6
  autogluon/timeseries/regressor.py,sha256=wcYbvE7kFopdscubfhIfeLI3ovxKe_fUVtt0b1zWdV0,6823
7
7
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
8
- autogluon/timeseries/version.py,sha256=7qblMPXv5s3LDf5MpJkedB-LmO4B1uCyGUKo5eStHEc,90
8
+ autogluon/timeseries/version.py,sha256=k5yEeIHMAa7wwNFT6Xs3BeQ8qrgzCQ6ICoNHeZ7GR9g,90
9
9
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
10
10
  autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
11
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
12
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=UQ-iT2dGVJF57hlGkivbSEaBwf-5NP0Amohp4DccLUA,48492
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=9bJQeg3HkPeVnyxzwqAJiTJGYXths7vxUV_3-OsJ6pk,48640
13
13
  autogluon/timeseries/metrics/__init__.py,sha256=LLGmYaexsx7CregV-QaHc5exjZbsJfBSVOtxHRGC0ho,2139
14
14
  autogluon/timeseries/metrics/abstract.py,sha256=9xCFQ3NaR1C0hn01M7oBd72a_CiNV-w6QFcRjwUbKYI,8183
15
15
  autogluon/timeseries/metrics/point.py,sha256=z366XJz3n4MFl4JkXOD6ZxL69F_j7Y-jbrwb7J3yDqk,15513
@@ -25,7 +25,7 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=C1WVcuNlTcqo_
25
25
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=FozTzwcp1QjevEhrMLXsJHy8fymOcq1146oX4Al60wg,2517
26
26
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
27
27
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
28
- autogluon/timeseries/models/chronos/model.py,sha256=O-5uGZKJB6SN_y-lW1om54AM-J4Xak2w4w3qGVrCNcM,29740
28
+ autogluon/timeseries/models/chronos/model.py,sha256=Z3CtfRux7W2x7mghbq8YLGFLu9kTAsozid43AN1lH_s,30151
29
29
  autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
30
30
  autogluon/timeseries/models/chronos/pipeline/base.py,sha256=aAXCKy7Jmip4BI2UdPMoPe2gdDMbJHKxEolcTx_5SYQ,5463
31
31
  autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=iHKyw3Juml247jl7bEbGlabtMyp3ibYEoA7rHiUC9f8,22048
@@ -59,11 +59,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
59
59
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
60
60
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
61
61
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
62
- autogluon.timeseries-1.1.2b20241114.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
- autogluon.timeseries-1.1.2b20241114.dist-info/METADATA,sha256=oJwg6S1bm4dyMqmA3sjZC5j25T-E8pE3C2QZwOgpkwI,12388
64
- autogluon.timeseries-1.1.2b20241114.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
- autogluon.timeseries-1.1.2b20241114.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
66
- autogluon.timeseries-1.1.2b20241114.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
- autogluon.timeseries-1.1.2b20241114.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
- autogluon.timeseries-1.1.2b20241114.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
- autogluon.timeseries-1.1.2b20241114.dist-info/RECORD,,
62
+ autogluon.timeseries-1.1.2b20241115.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
+ autogluon.timeseries-1.1.2b20241115.dist-info/METADATA,sha256=GWCpPfrJry0oxm90irCuNAdgEvasKyVcnn4bnbWnshA,12388
64
+ autogluon.timeseries-1.1.2b20241115.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
+ autogluon.timeseries-1.1.2b20241115.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
66
+ autogluon.timeseries-1.1.2b20241115.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
+ autogluon.timeseries-1.1.2b20241115.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.1.2b20241115.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
+ autogluon.timeseries-1.1.2b20241115.dist-info/RECORD,,