autogluon.timeseries 1.1.2b20241109__py3-none-any.whl → 1.1.2b20241112__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. autogluon/timeseries/dataset/ts_dataframe.py +5 -1
  2. autogluon/timeseries/models/abstract/abstract_timeseries_model.py +73 -5
  3. autogluon/timeseries/models/chronos/model.py +67 -38
  4. autogluon/timeseries/models/chronos/pipeline/__init__.py +11 -0
  5. autogluon/timeseries/models/chronos/pipeline/base.py +146 -0
  6. autogluon/timeseries/models/chronos/{pipeline.py → pipeline/chronos.py} +66 -102
  7. autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py +511 -0
  8. autogluon/timeseries/models/chronos/{utils.py → pipeline/utils.py} +37 -1
  9. autogluon/timeseries/models/gluonts/abstract_gluonts.py +1 -0
  10. autogluon/timeseries/models/gluonts/torch/models.py +3 -0
  11. autogluon/timeseries/models/local/abstract_local_model.py +4 -1
  12. autogluon/timeseries/models/local/statsforecast.py +3 -0
  13. autogluon/timeseries/models/multi_window/multi_window_model.py +5 -0
  14. autogluon/timeseries/predictor.py +1 -1
  15. autogluon/timeseries/regressor.py +146 -0
  16. autogluon/timeseries/transforms/scaler.py +1 -1
  17. autogluon/timeseries/utils/warning_filters.py +20 -0
  18. autogluon/timeseries/version.py +1 -1
  19. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/METADATA +5 -5
  20. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/RECORD +27 -23
  21. /autogluon.timeseries-1.1.2b20241109-py3.8-nspkg.pth → /autogluon.timeseries-1.1.2b20241112-py3.8-nspkg.pth +0 -0
  22. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/LICENSE +0 -0
  23. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/NOTICE +0 -0
  24. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/WHEEL +0 -0
  25. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/namespace_packages.txt +0 -0
  26. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/top_level.txt +0 -0
  27. {autogluon.timeseries-1.1.2b20241109.dist-info → autogluon.timeseries-1.1.2b20241112.dist-info}/zip-safe +0 -0
@@ -0,0 +1,146 @@
1
+ from typing import Any, Dict, Optional
2
+
3
+ import numpy as np
4
+ import pandas as pd
5
+
6
+ from autogluon.core.models import AbstractModel
7
+ from autogluon.tabular.trainer.model_presets.presets import MODEL_TYPES as TABULAR_MODEL_TYPES
8
+ from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TimeSeriesDataFrame
9
+ from autogluon.timeseries.utils.features import CovariateMetadata
10
+
11
+
12
+ class CovariateRegressor:
13
+ """Predicts target values from the covariates for the same observation.
14
+
15
+ The model construct the feature matrix using known_covariates and static_features.
16
+
17
+ Parameters
18
+ ----------
19
+ model_name : str
20
+ Name of the tabular regression model. See `autogluon.tabular.trainer.model_presets.presets.MODEL_TYPES` for the
21
+ list of available models.
22
+ model_hyperparameters : dict or None
23
+ Hyperparameters passed to the tabular regression model.
24
+ eval_metric : str
25
+ Metric provided as `eval_metric` to the tabular regression model. Must be compatible with `problem_type="regression"`.
26
+ refit_during_predict : bool
27
+ If True, the model will be re-trained every time `fit_transform` is called. If False, the model will only be
28
+ trained the first time that `fit_transform` is called, and future calls to `fit_transform` will only perform a
29
+ `transform`.
30
+ max_num_samples : int or None
31
+ If not None, training dataset passed to regression model will contain at most this many rows.
32
+ metadata : CovariateMetadata
33
+ Metadata object describing the covariates available in the dataset.
34
+ target : str
35
+ Name of the target column.
36
+ validation_frac : float, optional
37
+ Fraction of observations that are reserved as the validation set during training (starting from the end of each
38
+ time series).
39
+ """
40
+
41
+ def __init__(
42
+ self,
43
+ model_name: str = "GBM",
44
+ model_hyperparameters: Optional[Dict[str, Any]] = None,
45
+ eval_metric: str = "mean_absolute_error",
46
+ refit_during_predict: bool = False,
47
+ max_num_samples: Optional[int] = 500_000,
48
+ metadata: Optional[CovariateMetadata] = None,
49
+ target: str = "target",
50
+ validation_fraction: Optional[float] = 0.1,
51
+ ):
52
+ if model_name not in TABULAR_MODEL_TYPES:
53
+ raise ValueError(
54
+ f"Tabular model {model_name} not supported. Available models: {list(TABULAR_MODEL_TYPES)}"
55
+ )
56
+ self.target = target
57
+ self.model_type = TABULAR_MODEL_TYPES[model_name]
58
+ self.model_name = model_name
59
+ self.model_hyperparameters = model_hyperparameters or {}
60
+ self.refit_during_predict = refit_during_predict
61
+ self.tabular_eval_metric = eval_metric
62
+ self.max_num_samples = max_num_samples
63
+ self.validation_fraction = validation_fraction
64
+ self.model: Optional[AbstractModel] = None
65
+ self.metadata = metadata or CovariateMetadata()
66
+
67
+ def is_fit(self) -> bool:
68
+ return self.model is not None
69
+
70
+ def fit(self, data: TimeSeriesDataFrame, time_limit: Optional[float] = None, **kwargs) -> "CovariateRegressor":
71
+ """Fit the tabular regressor on the target column using covariates as features."""
72
+ tabular_df = self._get_tabular_df(data, static_features=data.static_features, include_target=True)
73
+ tabular_df = tabular_df.query(f"{self.target}.notnull()")
74
+
75
+ median_ts_length = data.num_timesteps_per_item().median()
76
+ if self.validation_fraction is not None:
77
+ grouped_df = tabular_df.groupby(ITEMID)
78
+ val_size = max(int(self.validation_fraction * median_ts_length), 1)
79
+ train_df = self._subsample_df(grouped_df.head(-val_size))
80
+ val_df = self._subsample_df(grouped_df.tail(val_size))
81
+ X = train_df.drop(columns=[self.target])
82
+ y = train_df[self.target]
83
+ X_val = val_df.drop(columns=[self.target])
84
+ y_val = val_df[self.target]
85
+ else:
86
+ tabular_df = self._subsample_df(tabular_df)
87
+ X = tabular_df.drop(columns=[self.target])
88
+ y = tabular_df[self.target]
89
+ X_val = None
90
+ y_val = None
91
+
92
+ self.model = self.model_type(
93
+ problem_type="regression",
94
+ hyperparameters=self.model_hyperparameters,
95
+ eval_metric=self.tabular_eval_metric,
96
+ )
97
+ self.model.fit(X=X, y=y, X_val=X_val, y_val=y_val, time_limit=time_limit, **kwargs)
98
+ return self
99
+
100
+ def transform(self, data: TimeSeriesDataFrame) -> TimeSeriesDataFrame:
101
+ """Subtract the tabular regressor predictions from the target column."""
102
+ y_pred = self._predict(data, static_features=data.static_features)
103
+ return data.assign(**{self.target: data[self.target] - y_pred})
104
+
105
+ def fit_transform(
106
+ self, data: TimeSeriesDataFrame, time_limit: Optional[float] = None, **kwargs
107
+ ) -> TimeSeriesDataFrame:
108
+ if not self.is_fit() or self.refit_during_predict:
109
+ self.fit(data=data, time_limit=time_limit, **kwargs)
110
+ return self.transform(data=data)
111
+
112
+ def inverse_transform(
113
+ self,
114
+ predictions: TimeSeriesDataFrame,
115
+ known_covariates: TimeSeriesDataFrame,
116
+ static_features: Optional[pd.DataFrame],
117
+ ) -> TimeSeriesDataFrame:
118
+ """Add the tabular regressor predictions to the target column."""
119
+ y_pred = self._predict(known_covariates, static_features=static_features)
120
+ return predictions.assign(**{col: predictions[col] + y_pred for col in predictions.columns})
121
+
122
+ def _predict(self, data: TimeSeriesDataFrame, static_features: Optional[pd.DataFrame]) -> np.ndarray:
123
+ """Construct the tabular features matrix and make predictions"""
124
+ tabular_df = self._get_tabular_df(data, static_features=static_features)
125
+ return self.model.predict(X=tabular_df)
126
+
127
+ def _get_tabular_df(
128
+ self,
129
+ data: TimeSeriesDataFrame,
130
+ static_features: Optional[pd.DataFrame] = None,
131
+ include_target: bool = False,
132
+ ) -> pd.DataFrame:
133
+ """Construct a tabular dataframe from known covariates and static features."""
134
+ available_columns = [ITEMID] + self.metadata.known_covariates
135
+ if include_target:
136
+ available_columns += [self.target]
137
+ tabular_df = pd.DataFrame(data).reset_index()[available_columns].astype({ITEMID: "category"})
138
+ if static_features is not None:
139
+ tabular_df = pd.merge(tabular_df, static_features, on=ITEMID)
140
+ return tabular_df
141
+
142
+ def _subsample_df(self, df: pd.DataFrame) -> pd.DataFrame:
143
+ """Randomly subsample the dataframe if it contains more than self.max_num_samples rows."""
144
+ if self.max_num_samples is not None and len(df) > self.max_num_samples:
145
+ df = df.sample(n=self.max_num_samples)
146
+ return df
@@ -85,7 +85,7 @@ class LocalMinMaxScaler(LocalTargetScaler):
85
85
  def _compute_loc_scale(self, target_series: pd.Series) -> Tuple[pd.Series, pd.Series]:
86
86
  stats = target_series.abs().groupby(level=ITEMID, sort=False).agg(["min", "max"])
87
87
  scale = (stats["max"] - stats["min"]).clip(lower=self.min_scale)
88
- loc = stats["min"] / scale
88
+ loc = stats["min"]
89
89
  return loc, scale
90
90
 
91
91
 
@@ -6,6 +6,7 @@ import os
6
6
  import re
7
7
  import sys
8
8
  import warnings
9
+ from collections import Counter
9
10
 
10
11
  __all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
11
12
 
@@ -70,3 +71,22 @@ def disable_stdout():
70
71
  sys.stdout = io.StringIO()
71
72
  yield
72
73
  sys.stdout = save_stdout
74
+
75
+
76
+ class DuplicateLogFilter:
77
+ def __init__(self, max_count: int = 1):
78
+ self.messages = Counter()
79
+ self.max_count = max_count
80
+
81
+ def filter(self, record):
82
+ count = self.messages[record.msg]
83
+ self.messages[record.msg] += 1
84
+ return count < self.max_count
85
+
86
+
87
+ @contextlib.contextmanager
88
+ def disable_duplicate_logs(logger, max_count: int = 1):
89
+ log_filter = DuplicateLogFilter(max_count=max_count)
90
+ logger.addFilter(log_filter)
91
+ yield
92
+ logger.removeFilter(log_filter)
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241109'
2
+ __version__ = '1.1.2b20241112'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241109
3
+ Version: 1.1.2b20241112
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -43,7 +43,7 @@ Requires-Dist: lightning<2.6,>=2.2
43
43
  Requires-Dist: pytorch-lightning
44
44
  Requires-Dist: transformers[sentencepiece]<5,>=4.38.0
45
45
  Requires-Dist: accelerate<1.0,>=0.32.0
46
- Requires-Dist: gluonts==0.15.1
46
+ Requires-Dist: gluonts==0.16.0
47
47
  Requires-Dist: networkx<4,>=3.0
48
48
  Requires-Dist: statsforecast<1.8,>=1.7.0
49
49
  Requires-Dist: mlforecast==0.13.4
@@ -53,9 +53,9 @@ Requires-Dist: fugue>=0.9.0
53
53
  Requires-Dist: tqdm<5,>=4.38
54
54
  Requires-Dist: orjson~=3.9
55
55
  Requires-Dist: tensorboard<3,>=2.9
56
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241109
57
- Requires-Dist: autogluon.common==1.1.2b20241109
58
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241109
56
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20241112
57
+ Requires-Dist: autogluon.common==1.1.2b20241112
58
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241112
59
59
  Provides-Extra: all
60
60
  Requires-Dist: optimum[onnxruntime]<1.20,>=1.17; extra == "all"
61
61
  Provides-Extra: chronos-onnx
@@ -1,14 +1,15 @@
1
- autogluon.timeseries-1.1.2b20241109-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20241112-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=3dUxI-U6TGfNtRQUzWTvBIo1GKeXYOhxIX_q7Fed9eA,14013
5
- autogluon/timeseries/predictor.py,sha256=1U9ic89B_JEHyzgKSu2-TN4XY9GmA8F1C77_eUBpQlI,84911
5
+ autogluon/timeseries/predictor.py,sha256=R9m-TYmlA4WoJbdYEL_AnEM26EhRIclynOfSmpO7mBk,84926
6
+ autogluon/timeseries/regressor.py,sha256=wcYbvE7kFopdscubfhIfeLI3ovxKe_fUVtt0b1zWdV0,6823
6
7
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=9nkI2OUdF0h6sRq5pouT1JYNVvDZ204TllaIaUV7hCs,90
8
+ autogluon/timeseries/version.py,sha256=lXKlufs6aLjs5PeI3KNuQ6bVkvRKxHvpSZbuJ-wwTeo,90
8
9
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
10
  autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
10
11
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
11
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=w7wEue_ZALNmvkGSEAnYE-jqbGj8fdsT9YvHpGY9URY,48296
12
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=UQ-iT2dGVJF57hlGkivbSEaBwf-5NP0Amohp4DccLUA,48492
12
13
  autogluon/timeseries/metrics/__init__.py,sha256=KzgXNj5or7RB_uadjgC8p5gxyV26zjj2hT58OmvnfmA,1875
13
14
  autogluon/timeseries/metrics/abstract.py,sha256=9xCFQ3NaR1C0hn01M7oBd72a_CiNV-w6QFcRjwUbKYI,8183
14
15
  autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEseJxUdneqE,13399
@@ -17,49 +18,52 @@ autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgioo
17
18
  autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
18
19
  autogluon/timeseries/models/presets.py,sha256=ujNt_hft_5eNkh-Wj_Na9GBdBmI-JdnBnOEHq8X0qXc,11778
19
20
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
20
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=siy-OW4zflN61-pnuhvYawDvchm3zXb1ta8HUDLxhWY,24793
21
+ autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=kVbJHyDWXmBJDL_4mUhEvpTG_d85vEjW5Og57d5CNN0,28092
21
22
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
22
23
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
23
24
  autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=C1WVcuNlTcqo_qGm3v0uPpraO06mdVnBNeflPbCPjNQ,32861
24
25
  autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=FozTzwcp1QjevEhrMLXsJHy8fymOcq1146oX4Al60wg,2517
25
26
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
26
27
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
27
- autogluon/timeseries/models/chronos/model.py,sha256=sUcZgi-AV4e_60WJpuirSZ9if7_GGAY39UwYntofwOo,14735
28
- autogluon/timeseries/models/chronos/pipeline.py,sha256=vR1LbMkWFKDX6WZBcAtsGQYnRq1vkV935omTj3Zyr9U,20788
29
- autogluon/timeseries/models/chronos/utils.py,sha256=dl7pytUFmosFVfBcBAGA0JqMJp4cTQ3DmM9Mdjap9no,2124
28
+ autogluon/timeseries/models/chronos/model.py,sha256=ULH7XCBcl93CQ4aKtY-RzhxlXyfb1bTfOmnAJWe2zLU,16589
29
+ autogluon/timeseries/models/chronos/pipeline/__init__.py,sha256=N-YZH9BGBoi99r5cznJe1zEEjwjIg7cOYIHZkKuJq44,247
30
+ autogluon/timeseries/models/chronos/pipeline/base.py,sha256=sVhADJ9fkJBL6p6UYw9zRb07Z1rGGHog95uOMrcs7dA,5044
31
+ autogluon/timeseries/models/chronos/pipeline/chronos.py,sha256=cbDS7_9Z8Sn1NZdwr2DqqCqxm_zWejDxKHHRLCvLDNE,19284
32
+ autogluon/timeseries/models/chronos/pipeline/chronos_bolt.py,sha256=vKXyz8lfIyOhobFp4kLkCQ61CWhm3BTXeluOq1EZaqU,19563
33
+ autogluon/timeseries/models/chronos/pipeline/utils.py,sha256=C8S-1gr_PMxLYes7SP7Ep0hOrA5k9jRjM4wJAcSNuCE,3519
30
34
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
31
35
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
32
36
  autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=5HvZuW5osgsZg3V69k82nKEOy_YgeH1JTfQa7F3cU7s,7220
33
37
  autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1julnpeoKbv5ZNuAR6-DFgA,361
34
- autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=QRGCLN9ZMw5zCgO5hNAOjHqp17zGn1-Uy0d7VEhYtlQ,34021
38
+ autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=tViaFXFOVjGQi2S6cUIW-ak0Evv7rKUm2QWsmpKDMEk,34076
35
39
  autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
- autogluon/timeseries/models/gluonts/torch/models.py,sha256=85MWDXPwDncGwLijkm-K1tS-05LvGq4Xl-WbbIcYCO8,24906
40
+ autogluon/timeseries/models/gluonts/torch/models.py,sha256=ASTMabSAzBRJ_s5Iqjp-9fZvt4aKN892Uz35kzqGMWM,25018
37
41
  autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
38
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=af3GFfUIGnVNzzZJ-WI61lw83lDFfgB0AfGxmkb-t_4,12226
42
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=OxEkqzfAd5diQDUYStw2nI-X2lo3H8GcMLDJ6-1XL_Y,12417
39
43
  autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
40
44
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
41
- autogluon/timeseries/models/local/statsforecast.py,sha256=C05waZQ4c2Ewm7FfARkVFWLRk_k0XvgYsQi74tHk_1U,32226
45
+ autogluon/timeseries/models/local/statsforecast.py,sha256=cFJ_A7LR2jTmFNGgMxt3xvEivQVYuV6bDCMii8-TKH0,32424
42
46
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
43
- autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=EAXzoQo96zTPNz9BTYDmV1878OVKb9F6h39y386N3zU,11740
47
+ autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=aNS0W4bh9quaxgFRtyJesVziPKHvg4lfCDrAQutqEjk,12014
44
48
  autogluon/timeseries/trainer/__init__.py,sha256=lxiOT-Gc6BEnr_yWQqra85kEngeM_wtH2SCaRbmC_qE,170
45
49
  autogluon/timeseries/trainer/abstract_trainer.py,sha256=hZI4QcsFvU1gxP2yv_DRCIMlc6q02ptR7UDA9EgJPoM,60409
46
50
  autogluon/timeseries/trainer/auto_trainer.py,sha256=psJFZBwWWPlLjNwAgvO4OUJXsRW1sTN2YS9a4pdoeoE,3344
47
51
  autogluon/timeseries/transforms/__init__.py,sha256=lzDavxdgGIz5m_DmSpNa9ewNU9Evndam3YXfOEk6kwY,174
48
- autogluon/timeseries/transforms/scaler.py,sha256=30JrAnZwj58ntes-YP1H_XmeVLGtFepjWnRzPQQ-t4k,5352
52
+ autogluon/timeseries/transforms/scaler.py,sha256=jgj9-637zgDREJidNpavKIQbF0y6RB_zwPGKWAGa6lw,5344
49
53
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
54
  autogluon/timeseries/utils/features.py,sha256=VvBQzaymSSzxI9khtcXbpir-qo1NWHe51O7F6ynyh_s,21943
51
55
  autogluon/timeseries/utils/forecast.py,sha256=p0WKM9Q0nLAwwmCgYZI1zi9mCOWXWJfllEt2lPRQl4M,1882
52
- autogluon/timeseries/utils/warning_filters.py,sha256=HMXNDo9jOUdf9wvyp-Db55xTq_Ctj6uso7qPhngoJPQ,1964
56
+ autogluon/timeseries/utils/warning_filters.py,sha256=JRitJwTsowvIXhNMEWjYIhLGgmXz1Kkj0J6ON3EVyS4,2508
53
57
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
54
58
  autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
55
59
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
56
60
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
57
61
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
58
- autogluon.timeseries-1.1.2b20241109.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
59
- autogluon.timeseries-1.1.2b20241109.dist-info/METADATA,sha256=ljUgk59dZEfQfbBgN5-v-mFIMb4saaIyhDfj-rtBhUg,12388
60
- autogluon.timeseries-1.1.2b20241109.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
61
- autogluon.timeseries-1.1.2b20241109.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
62
- autogluon.timeseries-1.1.2b20241109.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
63
- autogluon.timeseries-1.1.2b20241109.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
64
- autogluon.timeseries-1.1.2b20241109.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
65
- autogluon.timeseries-1.1.2b20241109.dist-info/RECORD,,
62
+ autogluon.timeseries-1.1.2b20241112.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
63
+ autogluon.timeseries-1.1.2b20241112.dist-info/METADATA,sha256=l1LD3PIyOjR4eUt0Y-j8AmPpj0u4w1SYh9kzhvkCuZ0,12388
64
+ autogluon.timeseries-1.1.2b20241112.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
65
+ autogluon.timeseries-1.1.2b20241112.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
66
+ autogluon.timeseries-1.1.2b20241112.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
67
+ autogluon.timeseries-1.1.2b20241112.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
68
+ autogluon.timeseries-1.1.2b20241112.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
69
+ autogluon.timeseries-1.1.2b20241112.dist-info/RECORD,,