autogluon.timeseries 1.1.2b20241022__py3-none-any.whl → 1.1.2b20241024__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/timeseries/models/__init__.py +2 -6
- autogluon/timeseries/models/chronos/model.py +1 -1
- autogluon/timeseries/models/local/__init__.py +1 -3
- autogluon/timeseries/models/local/statsforecast.py +43 -78
- autogluon/timeseries/models/presets.py +6 -4
- autogluon/timeseries/predictor.py +1 -1
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/METADATA +4 -4
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/RECORD +16 -16
- /autogluon.timeseries-1.1.2b20241022-py3.8-nspkg.pth → /autogluon.timeseries-1.1.2b20241024-py3.8-nspkg.pth +0 -0
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.1.2b20241022.dist-info → autogluon.timeseries-1.1.2b20241024.dist-info}/zip-safe +0 -0
@@ -16,9 +16,7 @@ from .local import (
|
|
16
16
|
AutoCESModel,
|
17
17
|
AutoETSModel,
|
18
18
|
AverageModel,
|
19
|
-
|
20
|
-
CrostonOptimizedModel,
|
21
|
-
CrostonSBAModel,
|
19
|
+
CrostonModel,
|
22
20
|
DynamicOptimizedThetaModel,
|
23
21
|
ETSModel,
|
24
22
|
IMAPAModel,
|
@@ -37,9 +35,7 @@ __all__ = [
|
|
37
35
|
"AutoCESModel",
|
38
36
|
"AutoETSModel",
|
39
37
|
"AverageModel",
|
40
|
-
"
|
41
|
-
"CrostonSBAModel",
|
42
|
-
"CrostonOptimizedModel",
|
38
|
+
"CrostonModel",
|
43
39
|
"DLinearModel",
|
44
40
|
"DeepARModel",
|
45
41
|
"DirectTabularModel",
|
@@ -230,7 +230,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
230
230
|
"`import torch; torch.cuda.is_available()` returns `True`."
|
231
231
|
)
|
232
232
|
|
233
|
-
device = self.device or ("cuda" if gpu_available else "
|
233
|
+
device = self.device or ("cuda" if gpu_available else "cpu")
|
234
234
|
|
235
235
|
pipeline = OptimizedChronosPipeline.from_pretrained(
|
236
236
|
self.model_path,
|
@@ -1,5 +1,5 @@
|
|
1
1
|
import logging
|
2
|
-
from typing import Any, Dict, Type
|
2
|
+
from typing import Any, Dict, Optional, Type
|
3
3
|
|
4
4
|
import numpy as np
|
5
5
|
import pandas as pd
|
@@ -19,11 +19,13 @@ class AbstractStatsForecastModel(AbstractLocalModel):
|
|
19
19
|
local_model_args["season_length"] = seasonal_period
|
20
20
|
return local_model_args
|
21
21
|
|
22
|
-
def _get_model_type(self) -> Type:
|
22
|
+
def _get_model_type(self, variant: Optional[str] = None) -> Type:
|
23
23
|
raise NotImplementedError
|
24
24
|
|
25
25
|
def _get_local_model(self, local_model_args: Dict):
|
26
|
-
|
26
|
+
local_model_args = local_model_args.copy()
|
27
|
+
variant = local_model_args.pop("variant", None)
|
28
|
+
model_type = self._get_model_type(variant)
|
27
29
|
return model_type(**local_model_args)
|
28
30
|
|
29
31
|
def _get_point_forecast(
|
@@ -154,7 +156,7 @@ class AutoARIMAModel(AbstractProbabilisticStatsForecastModel):
|
|
154
156
|
local_model_args.setdefault("allowmean", True)
|
155
157
|
return local_model_args
|
156
158
|
|
157
|
-
def _get_model_type(self):
|
159
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
158
160
|
from statsforecast.models import AutoARIMA
|
159
161
|
|
160
162
|
return AutoARIMA
|
@@ -222,7 +224,7 @@ class ARIMAModel(AbstractProbabilisticStatsForecastModel):
|
|
222
224
|
local_model_args.setdefault("order", (1, 1, 1))
|
223
225
|
return local_model_args
|
224
226
|
|
225
|
-
def _get_model_type(self):
|
227
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
226
228
|
from statsforecast.models import ARIMA
|
227
229
|
|
228
230
|
return ARIMA
|
@@ -265,7 +267,7 @@ class AutoETSModel(AbstractProbabilisticStatsForecastModel):
|
|
265
267
|
"seasonal_period",
|
266
268
|
]
|
267
269
|
|
268
|
-
def _get_model_type(self):
|
270
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
269
271
|
from statsforecast.models import AutoETS
|
270
272
|
|
271
273
|
return AutoETS
|
@@ -365,7 +367,7 @@ class DynamicOptimizedThetaModel(AbstractProbabilisticStatsForecastModel):
|
|
365
367
|
"seasonal_period",
|
366
368
|
]
|
367
369
|
|
368
|
-
def _get_model_type(self):
|
370
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
369
371
|
from statsforecast.models import DynamicOptimizedTheta
|
370
372
|
|
371
373
|
return DynamicOptimizedTheta
|
@@ -409,7 +411,7 @@ class ThetaModel(AbstractProbabilisticStatsForecastModel):
|
|
409
411
|
"seasonal_period",
|
410
412
|
]
|
411
413
|
|
412
|
-
def _get_model_type(self):
|
414
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
413
415
|
from statsforecast.models import Theta
|
414
416
|
|
415
417
|
return Theta
|
@@ -529,7 +531,7 @@ class AutoCESModel(AbstractProbabilisticStatsForecastModel):
|
|
529
531
|
"seasonal_period",
|
530
532
|
]
|
531
533
|
|
532
|
-
def _get_model_type(self):
|
534
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
533
535
|
from statsforecast.models import AutoCES
|
534
536
|
|
535
537
|
return AutoCES
|
@@ -591,58 +593,32 @@ class ADIDAModel(AbstractStatsForecastIntermittentDemandModel):
|
|
591
593
|
This significantly speeds up fitting and usually leads to no change in accuracy.
|
592
594
|
"""
|
593
595
|
|
594
|
-
def _get_model_type(self):
|
596
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
595
597
|
from statsforecast.models import ADIDA
|
596
598
|
|
597
599
|
return ADIDA
|
598
600
|
|
599
601
|
|
600
|
-
class
|
601
|
-
"""Intermittent demand forecasting model using Croston's model
|
602
|
-
bias correction approach [SyntetosBoylan2001]_.
|
603
|
-
|
604
|
-
Based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_.
|
605
|
-
|
602
|
+
class CrostonModel(AbstractStatsForecastIntermittentDemandModel):
|
603
|
+
"""Intermittent demand forecasting model using Croston's model from [Croston1972]_ and [SyntetosBoylan2001]_.
|
606
604
|
|
607
605
|
References
|
608
606
|
----------
|
607
|
+
.. [Croston1972] Croston, John D. "Forecasting and stock control for intermittent demands." Journal of
|
608
|
+
the Operational Research Society 23.3 (1972): 289-303.
|
609
609
|
.. [SyntetosBoylan2001] Syntetos, Aris A., and John E. Boylan. "On the bias of intermittent
|
610
610
|
demand estimates." International journal of production economics 71.1-3 (2001): 457-466.
|
611
611
|
|
612
612
|
|
613
613
|
Other Parameters
|
614
614
|
----------------
|
615
|
-
|
616
|
-
|
617
|
-
When set to a float between 0.0 and 1.0, that fraction of available CPU cores is used.
|
618
|
-
When set to a positive integer, that many cores are used.
|
619
|
-
When set to -1, all CPU cores are used.
|
620
|
-
max_ts_length : int, default = 2500
|
621
|
-
If not None, only the last ``max_ts_length`` time steps of each time series will be used to train the model.
|
622
|
-
This significantly speeds up fitting and usually leads to no change in accuracy.
|
623
|
-
"""
|
624
|
-
|
625
|
-
def _get_model_type(self):
|
626
|
-
from statsforecast.models import CrostonSBA
|
615
|
+
variant : {"SBA", "classic", "optimized"}, default = "SBA"
|
616
|
+
Variant of the Croston model that is used. Available options:
|
627
617
|
|
628
|
-
|
618
|
+
- `"classic"` - variant of the Croston method where the smoothing parameter is fixed to 0.1 (based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_)
|
619
|
+
- `"SBA"` - variant of the Croston method based on Syntetos-Boylan Approximation (based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_)
|
620
|
+
- `"optimized"` - variant of the Croston method where the smoothing parameter is optimized (based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_)
|
629
621
|
|
630
|
-
|
631
|
-
class CrostonOptimizedModel(AbstractStatsForecastIntermittentDemandModel):
|
632
|
-
"""Intermittent demand forecasting model using Croston's model where the smoothing parameter
|
633
|
-
is optimized [Croston1972]_.
|
634
|
-
|
635
|
-
Based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_.
|
636
|
-
|
637
|
-
|
638
|
-
References
|
639
|
-
----------
|
640
|
-
.. [Croston1972] Croston, John D. "Forecasting and stock control for intermittent demands." Journal of
|
641
|
-
the Operational Research Society 23.3 (1972): 289-303.
|
642
|
-
|
643
|
-
|
644
|
-
Other Parameters
|
645
|
-
----------------
|
646
622
|
n_jobs : int or float, default = 0.5
|
647
623
|
Number of CPU cores used to fit the models in parallel.
|
648
624
|
When set to a float between 0.0 and 1.0, that fraction of available CPU cores is used.
|
@@ -653,41 +629,30 @@ class CrostonOptimizedModel(AbstractStatsForecastIntermittentDemandModel):
|
|
653
629
|
This significantly speeds up fitting and usually leads to no change in accuracy.
|
654
630
|
"""
|
655
631
|
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
return CrostonOptimized
|
660
|
-
|
661
|
-
|
662
|
-
class CrostonClassicModel(AbstractStatsForecastIntermittentDemandModel):
|
663
|
-
"""Intermittent demand forecasting model using Croston's model where the smoothing parameter
|
664
|
-
is fixed to 0.1 [Croston1972]_.
|
665
|
-
|
666
|
-
Based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_.
|
667
|
-
|
668
|
-
|
669
|
-
References
|
670
|
-
----------
|
671
|
-
.. [Croston1972] Croston, John D. "Forecasting and stock control for intermittent demands." Journal of
|
672
|
-
the Operational Research Society 23.3 (1972): 289-303.
|
632
|
+
allowed_local_model_args = [
|
633
|
+
"variant",
|
634
|
+
]
|
673
635
|
|
636
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
637
|
+
from statsforecast.models import CrostonClassic, CrostonOptimized, CrostonSBA
|
674
638
|
|
675
|
-
|
676
|
-
|
677
|
-
|
678
|
-
|
679
|
-
|
680
|
-
When set to a positive integer, that many cores are used.
|
681
|
-
When set to -1, all CPU cores are used.
|
682
|
-
max_ts_length : int, default = 2500
|
683
|
-
If not None, only the last ``max_ts_length`` time steps of each time series will be used to train the model.
|
684
|
-
This significantly speeds up fitting and usually leads to no change in accuracy.
|
685
|
-
"""
|
639
|
+
model_variants = {
|
640
|
+
"classic": CrostonClassic,
|
641
|
+
"sba": CrostonSBA,
|
642
|
+
"optimized": CrostonOptimized,
|
643
|
+
}
|
686
644
|
|
687
|
-
|
688
|
-
|
645
|
+
if not isinstance(variant, str) or variant.lower() not in model_variants:
|
646
|
+
raise ValueError(
|
647
|
+
f"Invalid model variant '{variant}'. Available Croston model variants: {list(model_variants)}"
|
648
|
+
)
|
649
|
+
else:
|
650
|
+
return model_variants[variant.lower()]
|
689
651
|
|
690
|
-
|
652
|
+
def _update_local_model_args(self, local_model_args: dict) -> dict:
|
653
|
+
local_model_args = super()._update_local_model_args(local_model_args)
|
654
|
+
local_model_args.setdefault("variant", "SBA")
|
655
|
+
return local_model_args
|
691
656
|
|
692
657
|
|
693
658
|
class IMAPAModel(AbstractStatsForecastIntermittentDemandModel):
|
@@ -716,7 +681,7 @@ class IMAPAModel(AbstractStatsForecastIntermittentDemandModel):
|
|
716
681
|
This significantly speeds up fitting and usually leads to no change in accuracy.
|
717
682
|
"""
|
718
683
|
|
719
|
-
def _get_model_type(self):
|
684
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
720
685
|
from statsforecast.models import IMAPA
|
721
686
|
|
722
687
|
return IMAPA
|
@@ -738,7 +703,7 @@ class ZeroModel(AbstractStatsForecastIntermittentDemandModel):
|
|
738
703
|
This significantly speeds up fitting and usually leads to no change in accuracy.
|
739
704
|
"""
|
740
705
|
|
741
|
-
def _get_model_type(self):
|
706
|
+
def _get_model_type(self, variant: Optional[str] = None):
|
742
707
|
# ZeroModel does not depend on a StatsForecast implementation
|
743
708
|
raise NotImplementedError
|
744
709
|
|
@@ -16,7 +16,7 @@ from . import (
|
|
16
16
|
AutoETSModel,
|
17
17
|
AverageModel,
|
18
18
|
ChronosModel,
|
19
|
-
|
19
|
+
CrostonModel,
|
20
20
|
DeepARModel,
|
21
21
|
DirectTabularModel,
|
22
22
|
DLinearModel,
|
@@ -68,7 +68,8 @@ MODEL_TYPES = dict(
|
|
68
68
|
ETS=ETSModel,
|
69
69
|
ARIMA=ARIMAModel,
|
70
70
|
ADIDA=ADIDAModel,
|
71
|
-
|
71
|
+
Croston=CrostonModel,
|
72
|
+
CrostonSBA=CrostonModel, # Alias for backward compatibility
|
72
73
|
IMAPA=IMAPAModel,
|
73
74
|
Chronos=ChronosModel,
|
74
75
|
)
|
@@ -85,7 +86,8 @@ DEFAULT_MODEL_PRIORITY = dict(
|
|
85
86
|
# All local models are grouped together to make sure that joblib parallel pool is reused
|
86
87
|
NPTS=80,
|
87
88
|
ETS=80,
|
88
|
-
CrostonSBA=80,
|
89
|
+
CrostonSBA=80, # Alias for backward compatibility
|
90
|
+
Croston=80,
|
89
91
|
Theta=75,
|
90
92
|
DynamicOptimizedTheta=75,
|
91
93
|
AutoETS=70,
|
@@ -141,7 +143,7 @@ def get_default_hps(key):
|
|
141
143
|
},
|
142
144
|
"default": {
|
143
145
|
"SeasonalNaive": {},
|
144
|
-
"
|
146
|
+
"Croston": {},
|
145
147
|
"AutoETS": {},
|
146
148
|
"AutoARIMA": {},
|
147
149
|
"NPTS": {},
|
@@ -502,7 +502,7 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
|
|
502
502
|
and ``DirectTabular``. These models are fast to train but may not be very accurate.
|
503
503
|
- ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer``. Default setting that produces good forecasts
|
504
504
|
with reasonable training time.
|
505
|
-
- ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``, ``AutoARIMA``, ``
|
505
|
+
- ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``, ``AutoARIMA``, ``Croston``,
|
506
506
|
``DynamicOptimizedTheta``). Much more accurate than ``medium_quality``, but takes longer to train.
|
507
507
|
- ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
|
508
508
|
|
autogluon/timeseries/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.timeseries
|
3
|
-
Version: 1.1.
|
3
|
+
Version: 1.1.2b20241024
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -52,9 +52,9 @@ Requires-Dist: fugue>=0.9.0
|
|
52
52
|
Requires-Dist: tqdm<5,>=4.38
|
53
53
|
Requires-Dist: orjson~=3.9
|
54
54
|
Requires-Dist: tensorboard<3,>=2.9
|
55
|
-
Requires-Dist: autogluon.core[raytune]==1.1.
|
56
|
-
Requires-Dist: autogluon.common==1.1.
|
57
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.
|
55
|
+
Requires-Dist: autogluon.core[raytune]==1.1.2b20241024
|
56
|
+
Requires-Dist: autogluon.common==1.1.2b20241024
|
57
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241024
|
58
58
|
Provides-Extra: all
|
59
59
|
Requires-Dist: optimum[onnxruntime]<1.19,>=1.17; extra == "all"
|
60
60
|
Provides-Extra: chronos-onnx
|
@@ -1,10 +1,10 @@
|
|
1
|
-
autogluon.timeseries-1.1.
|
1
|
+
autogluon.timeseries-1.1.2b20241024-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
4
4
|
autogluon/timeseries/learner.py,sha256=3dUxI-U6TGfNtRQUzWTvBIo1GKeXYOhxIX_q7Fed9eA,14013
|
5
|
-
autogluon/timeseries/predictor.py,sha256=
|
5
|
+
autogluon/timeseries/predictor.py,sha256=1U9ic89B_JEHyzgKSu2-TN4XY9GmA8F1C77_eUBpQlI,84911
|
6
6
|
autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
|
7
|
-
autogluon/timeseries/version.py,sha256=
|
7
|
+
autogluon/timeseries/version.py,sha256=XSt3dQONtE_qulpWSQudAygbDTIUsrDox0KXsnf4heE,90
|
8
8
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
9
9
|
autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
|
10
10
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
@@ -14,8 +14,8 @@ autogluon/timeseries/metrics/abstract.py,sha256=9xCFQ3NaR1C0hn01M7oBd72a_CiNV-w6
|
|
14
14
|
autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEseJxUdneqE,13399
|
15
15
|
autogluon/timeseries/metrics/quantile.py,sha256=owMbOAJYwVyzdRkrJpuCGUXk937GU843QndCZyp5n9Y,3967
|
16
16
|
autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgiooEccrf2Kc,912
|
17
|
-
autogluon/timeseries/models/__init__.py,sha256=
|
18
|
-
autogluon/timeseries/models/presets.py,sha256=
|
17
|
+
autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
|
18
|
+
autogluon/timeseries/models/presets.py,sha256=ujNt_hft_5eNkh-Wj_Na9GBdBmI-JdnBnOEHq8X0qXc,11778
|
19
19
|
autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
|
20
20
|
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=siy-OW4zflN61-pnuhvYawDvchm3zXb1ta8HUDLxhWY,24793
|
21
21
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
@@ -24,7 +24,7 @@ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=C1WVcuNlTcqo_
|
|
24
24
|
autogluon/timeseries/models/autogluon_tabular/transforms.py,sha256=FozTzwcp1QjevEhrMLXsJHy8fymOcq1146oX4Al60wg,2517
|
25
25
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=Fn3Vu_Q0PCtEUbtNgLp1xIblg7dOdpFlF3W5kLHgruI,63
|
26
26
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
27
|
-
autogluon/timeseries/models/chronos/model.py,sha256
|
27
|
+
autogluon/timeseries/models/chronos/model.py,sha256=-L1d1NU67l5-VYxCAtN7uy9jFfjxdzwjVV_SyycEflE,14702
|
28
28
|
autogluon/timeseries/models/chronos/pipeline.py,sha256=vR1LbMkWFKDX6WZBcAtsGQYnRq1vkV935omTj3Zyr9U,20788
|
29
29
|
autogluon/timeseries/models/chronos/utils.py,sha256=dl7pytUFmosFVfBcBAGA0JqMJp4cTQ3DmM9Mdjap9no,2124
|
30
30
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
|
@@ -34,11 +34,11 @@ autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1juln
|
|
34
34
|
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=QRGCLN9ZMw5zCgO5hNAOjHqp17zGn1-Uy0d7VEhYtlQ,34021
|
35
35
|
autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
36
36
|
autogluon/timeseries/models/gluonts/torch/models.py,sha256=85MWDXPwDncGwLijkm-K1tS-05LvGq4Xl-WbbIcYCO8,24906
|
37
|
-
autogluon/timeseries/models/local/__init__.py,sha256=
|
37
|
+
autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
|
38
38
|
autogluon/timeseries/models/local/abstract_local_model.py,sha256=af3GFfUIGnVNzzZJ-WI61lw83lDFfgB0AfGxmkb-t_4,12226
|
39
39
|
autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
|
40
40
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
41
|
-
autogluon/timeseries/models/local/statsforecast.py,sha256=
|
41
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=C05waZQ4c2Ewm7FfARkVFWLRk_k0XvgYsQi74tHk_1U,32226
|
42
42
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
43
43
|
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=EAXzoQo96zTPNz9BTYDmV1878OVKb9F6h39y386N3zU,11740
|
44
44
|
autogluon/timeseries/trainer/__init__.py,sha256=lxiOT-Gc6BEnr_yWQqra85kEngeM_wtH2SCaRbmC_qE,170
|
@@ -55,11 +55,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
55
55
|
autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
|
56
56
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
|
57
57
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
|
58
|
-
autogluon.timeseries-1.1.
|
59
|
-
autogluon.timeseries-1.1.
|
60
|
-
autogluon.timeseries-1.1.
|
61
|
-
autogluon.timeseries-1.1.
|
62
|
-
autogluon.timeseries-1.1.
|
63
|
-
autogluon.timeseries-1.1.
|
64
|
-
autogluon.timeseries-1.1.
|
65
|
-
autogluon.timeseries-1.1.
|
58
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
59
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/METADATA,sha256=0vLcXYB633a0cbfrrHTCovRsSsh1EeRPO7l7P2BSbl8,12355
|
60
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
61
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
62
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
63
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
64
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
65
|
+
autogluon.timeseries-1.1.2b20241024.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|