autogluon.timeseries 1.1.2b20241022__py3-none-any.whl → 1.1.2b20241023__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -16,9 +16,7 @@ from .local import (
16
16
  AutoCESModel,
17
17
  AutoETSModel,
18
18
  AverageModel,
19
- CrostonClassicModel,
20
- CrostonOptimizedModel,
21
- CrostonSBAModel,
19
+ CrostonModel,
22
20
  DynamicOptimizedThetaModel,
23
21
  ETSModel,
24
22
  IMAPAModel,
@@ -37,9 +35,7 @@ __all__ = [
37
35
  "AutoCESModel",
38
36
  "AutoETSModel",
39
37
  "AverageModel",
40
- "CrostonClassicModel",
41
- "CrostonSBAModel",
42
- "CrostonOptimizedModel",
38
+ "CrostonModel",
43
39
  "DLinearModel",
44
40
  "DeepARModel",
45
41
  "DirectTabularModel",
@@ -8,9 +8,7 @@ from .statsforecast import (
8
8
  AutoARIMAModel,
9
9
  AutoCESModel,
10
10
  AutoETSModel,
11
- CrostonClassicModel,
12
- CrostonOptimizedModel,
13
- CrostonSBAModel,
11
+ CrostonModel,
14
12
  DynamicOptimizedThetaModel,
15
13
  ETSModel,
16
14
  IMAPAModel,
@@ -1,5 +1,5 @@
1
1
  import logging
2
- from typing import Any, Dict, Type
2
+ from typing import Any, Dict, Optional, Type
3
3
 
4
4
  import numpy as np
5
5
  import pandas as pd
@@ -19,11 +19,13 @@ class AbstractStatsForecastModel(AbstractLocalModel):
19
19
  local_model_args["season_length"] = seasonal_period
20
20
  return local_model_args
21
21
 
22
- def _get_model_type(self) -> Type:
22
+ def _get_model_type(self, variant: Optional[str] = None) -> Type:
23
23
  raise NotImplementedError
24
24
 
25
25
  def _get_local_model(self, local_model_args: Dict):
26
- model_type = self._get_model_type()
26
+ local_model_args = local_model_args.copy()
27
+ variant = local_model_args.pop("variant", None)
28
+ model_type = self._get_model_type(variant)
27
29
  return model_type(**local_model_args)
28
30
 
29
31
  def _get_point_forecast(
@@ -154,7 +156,7 @@ class AutoARIMAModel(AbstractProbabilisticStatsForecastModel):
154
156
  local_model_args.setdefault("allowmean", True)
155
157
  return local_model_args
156
158
 
157
- def _get_model_type(self):
159
+ def _get_model_type(self, variant: Optional[str] = None):
158
160
  from statsforecast.models import AutoARIMA
159
161
 
160
162
  return AutoARIMA
@@ -222,7 +224,7 @@ class ARIMAModel(AbstractProbabilisticStatsForecastModel):
222
224
  local_model_args.setdefault("order", (1, 1, 1))
223
225
  return local_model_args
224
226
 
225
- def _get_model_type(self):
227
+ def _get_model_type(self, variant: Optional[str] = None):
226
228
  from statsforecast.models import ARIMA
227
229
 
228
230
  return ARIMA
@@ -265,7 +267,7 @@ class AutoETSModel(AbstractProbabilisticStatsForecastModel):
265
267
  "seasonal_period",
266
268
  ]
267
269
 
268
- def _get_model_type(self):
270
+ def _get_model_type(self, variant: Optional[str] = None):
269
271
  from statsforecast.models import AutoETS
270
272
 
271
273
  return AutoETS
@@ -365,7 +367,7 @@ class DynamicOptimizedThetaModel(AbstractProbabilisticStatsForecastModel):
365
367
  "seasonal_period",
366
368
  ]
367
369
 
368
- def _get_model_type(self):
370
+ def _get_model_type(self, variant: Optional[str] = None):
369
371
  from statsforecast.models import DynamicOptimizedTheta
370
372
 
371
373
  return DynamicOptimizedTheta
@@ -409,7 +411,7 @@ class ThetaModel(AbstractProbabilisticStatsForecastModel):
409
411
  "seasonal_period",
410
412
  ]
411
413
 
412
- def _get_model_type(self):
414
+ def _get_model_type(self, variant: Optional[str] = None):
413
415
  from statsforecast.models import Theta
414
416
 
415
417
  return Theta
@@ -529,7 +531,7 @@ class AutoCESModel(AbstractProbabilisticStatsForecastModel):
529
531
  "seasonal_period",
530
532
  ]
531
533
 
532
- def _get_model_type(self):
534
+ def _get_model_type(self, variant: Optional[str] = None):
533
535
  from statsforecast.models import AutoCES
534
536
 
535
537
  return AutoCES
@@ -591,58 +593,32 @@ class ADIDAModel(AbstractStatsForecastIntermittentDemandModel):
591
593
  This significantly speeds up fitting and usually leads to no change in accuracy.
592
594
  """
593
595
 
594
- def _get_model_type(self):
596
+ def _get_model_type(self, variant: Optional[str] = None):
595
597
  from statsforecast.models import ADIDA
596
598
 
597
599
  return ADIDA
598
600
 
599
601
 
600
- class CrostonSBAModel(AbstractStatsForecastIntermittentDemandModel):
601
- """Intermittent demand forecasting model using Croston's model with the Syntetos-Boylan
602
- bias correction approach [SyntetosBoylan2001]_.
603
-
604
- Based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_.
605
-
602
+ class CrostonModel(AbstractStatsForecastIntermittentDemandModel):
603
+ """Intermittent demand forecasting model using Croston's model from [Croston1972]_ and [SyntetosBoylan2001]_.
606
604
 
607
605
  References
608
606
  ----------
607
+ .. [Croston1972] Croston, John D. "Forecasting and stock control for intermittent demands." Journal of
608
+ the Operational Research Society 23.3 (1972): 289-303.
609
609
  .. [SyntetosBoylan2001] Syntetos, Aris A., and John E. Boylan. "On the bias of intermittent
610
610
  demand estimates." International journal of production economics 71.1-3 (2001): 457-466.
611
611
 
612
612
 
613
613
  Other Parameters
614
614
  ----------------
615
- n_jobs : int or float, default = 0.5
616
- Number of CPU cores used to fit the models in parallel.
617
- When set to a float between 0.0 and 1.0, that fraction of available CPU cores is used.
618
- When set to a positive integer, that many cores are used.
619
- When set to -1, all CPU cores are used.
620
- max_ts_length : int, default = 2500
621
- If not None, only the last ``max_ts_length`` time steps of each time series will be used to train the model.
622
- This significantly speeds up fitting and usually leads to no change in accuracy.
623
- """
624
-
625
- def _get_model_type(self):
626
- from statsforecast.models import CrostonSBA
615
+ variant : {"SBA", "classic", "optimized"}, default = "SBA"
616
+ Variant of the Croston model that is used. Available options:
627
617
 
628
- return CrostonSBA
618
+ - `"classic"` - variant of the Croston method where the smoothing parameter is fixed to 0.1 (based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_)
619
+ - `"SBA"` - variant of the Croston method based on Syntetos-Boylan Approximation (based on `statsforecast.models.CrostonSBA <https://nixtla.mintlify.app/statsforecast/docs/models/crostonsba.html>`_)
620
+ - `"optimized"` - variant of the Croston method where the smoothing parameter is optimized (based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_)
629
621
 
630
-
631
- class CrostonOptimizedModel(AbstractStatsForecastIntermittentDemandModel):
632
- """Intermittent demand forecasting model using Croston's model where the smoothing parameter
633
- is optimized [Croston1972]_.
634
-
635
- Based on `statsforecast.models.CrostonOptimized <https://nixtla.mintlify.app/statsforecast/docs/models/crostonoptimized.html>`_.
636
-
637
-
638
- References
639
- ----------
640
- .. [Croston1972] Croston, John D. "Forecasting and stock control for intermittent demands." Journal of
641
- the Operational Research Society 23.3 (1972): 289-303.
642
-
643
-
644
- Other Parameters
645
- ----------------
646
622
  n_jobs : int or float, default = 0.5
647
623
  Number of CPU cores used to fit the models in parallel.
648
624
  When set to a float between 0.0 and 1.0, that fraction of available CPU cores is used.
@@ -653,41 +629,30 @@ class CrostonOptimizedModel(AbstractStatsForecastIntermittentDemandModel):
653
629
  This significantly speeds up fitting and usually leads to no change in accuracy.
654
630
  """
655
631
 
656
- def _get_model_type(self):
657
- from statsforecast.models import CrostonOptimized
658
-
659
- return CrostonOptimized
660
-
661
-
662
- class CrostonClassicModel(AbstractStatsForecastIntermittentDemandModel):
663
- """Intermittent demand forecasting model using Croston's model where the smoothing parameter
664
- is fixed to 0.1 [Croston1972]_.
665
-
666
- Based on `statsforecast.models.CrostonClassic <https://nixtla.mintlify.app/statsforecast/docs/models/crostonclassic.html>`_.
667
-
668
-
669
- References
670
- ----------
671
- .. [Croston1972] Croston, John D. "Forecasting and stock control for intermittent demands." Journal of
672
- the Operational Research Society 23.3 (1972): 289-303.
632
+ allowed_local_model_args = [
633
+ "variant",
634
+ ]
673
635
 
636
+ def _get_model_type(self, variant: Optional[str] = None):
637
+ from statsforecast.models import CrostonClassic, CrostonOptimized, CrostonSBA
674
638
 
675
- Other Parameters
676
- ----------------
677
- n_jobs : int or float, default = 0.5
678
- Number of CPU cores used to fit the models in parallel.
679
- When set to a float between 0.0 and 1.0, that fraction of available CPU cores is used.
680
- When set to a positive integer, that many cores are used.
681
- When set to -1, all CPU cores are used.
682
- max_ts_length : int, default = 2500
683
- If not None, only the last ``max_ts_length`` time steps of each time series will be used to train the model.
684
- This significantly speeds up fitting and usually leads to no change in accuracy.
685
- """
639
+ model_variants = {
640
+ "classic": CrostonClassic,
641
+ "sba": CrostonSBA,
642
+ "optimized": CrostonOptimized,
643
+ }
686
644
 
687
- def _get_model_type(self):
688
- from statsforecast.models import CrostonClassic
645
+ if not isinstance(variant, str) or variant.lower() not in model_variants:
646
+ raise ValueError(
647
+ f"Invalid model variant '{variant}'. Available Croston model variants: {list(model_variants)}"
648
+ )
649
+ else:
650
+ return model_variants[variant.lower()]
689
651
 
690
- return CrostonClassic
652
+ def _update_local_model_args(self, local_model_args: dict) -> dict:
653
+ local_model_args = super()._update_local_model_args(local_model_args)
654
+ local_model_args.setdefault("variant", "SBA")
655
+ return local_model_args
691
656
 
692
657
 
693
658
  class IMAPAModel(AbstractStatsForecastIntermittentDemandModel):
@@ -716,7 +681,7 @@ class IMAPAModel(AbstractStatsForecastIntermittentDemandModel):
716
681
  This significantly speeds up fitting and usually leads to no change in accuracy.
717
682
  """
718
683
 
719
- def _get_model_type(self):
684
+ def _get_model_type(self, variant: Optional[str] = None):
720
685
  from statsforecast.models import IMAPA
721
686
 
722
687
  return IMAPA
@@ -738,7 +703,7 @@ class ZeroModel(AbstractStatsForecastIntermittentDemandModel):
738
703
  This significantly speeds up fitting and usually leads to no change in accuracy.
739
704
  """
740
705
 
741
- def _get_model_type(self):
706
+ def _get_model_type(self, variant: Optional[str] = None):
742
707
  # ZeroModel does not depend on a StatsForecast implementation
743
708
  raise NotImplementedError
744
709
 
@@ -16,7 +16,7 @@ from . import (
16
16
  AutoETSModel,
17
17
  AverageModel,
18
18
  ChronosModel,
19
- CrostonSBAModel,
19
+ CrostonModel,
20
20
  DeepARModel,
21
21
  DirectTabularModel,
22
22
  DLinearModel,
@@ -68,7 +68,8 @@ MODEL_TYPES = dict(
68
68
  ETS=ETSModel,
69
69
  ARIMA=ARIMAModel,
70
70
  ADIDA=ADIDAModel,
71
- CrostonSBA=CrostonSBAModel,
71
+ Croston=CrostonModel,
72
+ CrostonSBA=CrostonModel, # Alias for backward compatibility
72
73
  IMAPA=IMAPAModel,
73
74
  Chronos=ChronosModel,
74
75
  )
@@ -85,7 +86,8 @@ DEFAULT_MODEL_PRIORITY = dict(
85
86
  # All local models are grouped together to make sure that joblib parallel pool is reused
86
87
  NPTS=80,
87
88
  ETS=80,
88
- CrostonSBA=80,
89
+ CrostonSBA=80, # Alias for backward compatibility
90
+ Croston=80,
89
91
  Theta=75,
90
92
  DynamicOptimizedTheta=75,
91
93
  AutoETS=70,
@@ -141,7 +143,7 @@ def get_default_hps(key):
141
143
  },
142
144
  "default": {
143
145
  "SeasonalNaive": {},
144
- "CrostonSBA": {},
146
+ "Croston": {},
145
147
  "AutoETS": {},
146
148
  "AutoARIMA": {},
147
149
  "NPTS": {},
@@ -502,7 +502,7 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
502
502
  and ``DirectTabular``. These models are fast to train but may not be very accurate.
503
503
  - ``"medium_quality"``: all models mentioned above + deep learning model ``TemporalFusionTransformer``. Default setting that produces good forecasts
504
504
  with reasonable training time.
505
- - ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``, ``AutoARIMA``, ``CrostonSBA``,
505
+ - ``"high_quality"``: All ML models available in AutoGluon + additional statistical models (``NPTS``, ``AutoETS``, ``AutoARIMA``, ``Croston``,
506
506
  ``DynamicOptimizedTheta``). Much more accurate than ``medium_quality``, but takes longer to train.
507
507
  - ``"best_quality"``: Same models as in ``"high_quality"``, but performs validation with multiple backtests. Usually better than ``high_quality``, but takes even longer to train.
508
508
 
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241022'
2
+ __version__ = '1.1.2b20241023'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20241022
3
+ Version: 1.1.2b20241023
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -52,9 +52,9 @@ Requires-Dist: fugue>=0.9.0
52
52
  Requires-Dist: tqdm<5,>=4.38
53
53
  Requires-Dist: orjson~=3.9
54
54
  Requires-Dist: tensorboard<3,>=2.9
55
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241022
56
- Requires-Dist: autogluon.common==1.1.2b20241022
57
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241022
55
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20241023
56
+ Requires-Dist: autogluon.common==1.1.2b20241023
57
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost]==1.1.2b20241023
58
58
  Provides-Extra: all
59
59
  Requires-Dist: optimum[onnxruntime]<1.19,>=1.17; extra == "all"
60
60
  Provides-Extra: chronos-onnx
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.1.2b20241022-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20241023-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=3dUxI-U6TGfNtRQUzWTvBIo1GKeXYOhxIX_q7Fed9eA,14013
5
- autogluon/timeseries/predictor.py,sha256=3o1h5zcB69w7Bt5GC7j1f-pn2kahWcHJQiQ0bI9zdp8,84914
5
+ autogluon/timeseries/predictor.py,sha256=1U9ic89B_JEHyzgKSu2-TN4XY9GmA8F1C77_eUBpQlI,84911
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=rNMvBUDjYOS-wxcBL5PQg4JWpLiDp5OsmKzpmF6NyRg,90
7
+ autogluon/timeseries/version.py,sha256=zNXzLcd2xHl1327Vj6HlIYZP0k8bxYq-NVGTSmrdkOc,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -14,8 +14,8 @@ autogluon/timeseries/metrics/abstract.py,sha256=9xCFQ3NaR1C0hn01M7oBd72a_CiNV-w6
14
14
  autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEseJxUdneqE,13399
15
15
  autogluon/timeseries/metrics/quantile.py,sha256=owMbOAJYwVyzdRkrJpuCGUXk937GU843QndCZyp5n9Y,3967
16
16
  autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgiooEccrf2Kc,912
17
- autogluon/timeseries/models/__init__.py,sha256=WKV7DIpJkrwEj0cUfscESp67Ydap9hAqaNTYvgi2EIA,1303
18
- autogluon/timeseries/models/presets.py,sha256=7ORBU-7fCwwYlpXaWCXEfNx0pss3mvB6KGSsQ1kyw2k,11673
17
+ autogluon/timeseries/models/__init__.py,sha256=MYD9JJ-wUDE5B6jW6E6LU2eXQ6vflfQBvqQJkdzJa3A,1189
18
+ autogluon/timeseries/models/presets.py,sha256=ujNt_hft_5eNkh-Wj_Na9GBdBmI-JdnBnOEHq8X0qXc,11778
19
19
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
20
20
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=siy-OW4zflN61-pnuhvYawDvchm3zXb1ta8HUDLxhWY,24793
21
21
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
@@ -34,11 +34,11 @@ autogluon/timeseries/models/gluonts/__init__.py,sha256=asC1PTj4j9xMbilvk1IT1juln
34
34
  autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=QRGCLN9ZMw5zCgO5hNAOjHqp17zGn1-Uy0d7VEhYtlQ,34021
35
35
  autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
36
  autogluon/timeseries/models/gluonts/torch/models.py,sha256=85MWDXPwDncGwLijkm-K1tS-05LvGq4Xl-WbbIcYCO8,24906
37
- autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0LPPOwtXwmb1ErohQ,756
37
+ autogluon/timeseries/models/local/__init__.py,sha256=e2UImoJhmj70E148IIObv90C_bHxgyLNk6YsS4p7pfs,701
38
38
  autogluon/timeseries/models/local/abstract_local_model.py,sha256=af3GFfUIGnVNzzZJ-WI61lw83lDFfgB0AfGxmkb-t_4,12226
39
39
  autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
40
40
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
41
- autogluon/timeseries/models/local/statsforecast.py,sha256=79swW7g7bn1CmuGY79i7r0uj0QZr6WLIfH_x3p1FTDA,32742
41
+ autogluon/timeseries/models/local/statsforecast.py,sha256=C05waZQ4c2Ewm7FfARkVFWLRk_k0XvgYsQi74tHk_1U,32226
42
42
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
43
43
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=EAXzoQo96zTPNz9BTYDmV1878OVKb9F6h39y386N3zU,11740
44
44
  autogluon/timeseries/trainer/__init__.py,sha256=lxiOT-Gc6BEnr_yWQqra85kEngeM_wtH2SCaRbmC_qE,170
@@ -55,11 +55,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
55
55
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
56
56
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
57
57
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
58
- autogluon.timeseries-1.1.2b20241022.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
59
- autogluon.timeseries-1.1.2b20241022.dist-info/METADATA,sha256=NO8_f2er6F0YsWrvl4_4Cd9wQDYtrWY-zZ62B-_4fBI,12355
60
- autogluon.timeseries-1.1.2b20241022.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
61
- autogluon.timeseries-1.1.2b20241022.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
62
- autogluon.timeseries-1.1.2b20241022.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
63
- autogluon.timeseries-1.1.2b20241022.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
64
- autogluon.timeseries-1.1.2b20241022.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
65
- autogluon.timeseries-1.1.2b20241022.dist-info/RECORD,,
58
+ autogluon.timeseries-1.1.2b20241023.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
59
+ autogluon.timeseries-1.1.2b20241023.dist-info/METADATA,sha256=J_J15yWFk4ShviPVpn-k4VsvGGvJJ1icrE6goKZ330M,12355
60
+ autogluon.timeseries-1.1.2b20241023.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
61
+ autogluon.timeseries-1.1.2b20241023.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
62
+ autogluon.timeseries-1.1.2b20241023.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
63
+ autogluon.timeseries-1.1.2b20241023.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
64
+ autogluon.timeseries-1.1.2b20241023.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
65
+ autogluon.timeseries-1.1.2b20241023.dist-info/RECORD,,