autogluon.timeseries 1.1.2b20240628__py3-none-any.whl → 1.1.2b20240630__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/models/local/statsforecast.py +1 -4
- autogluon/timeseries/models/presets.py +2 -3
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/METADATA +7 -6
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/RECORD +12 -12
- /autogluon.timeseries-1.1.2b20240628-py3.8-nspkg.pth → /autogluon.timeseries-1.1.2b20240630-py3.8-nspkg.pth +0 -0
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.1.2b20240628.dist-info → autogluon.timeseries-1.1.2b20240630.dist-info}/zip-safe +0 -0
|
@@ -204,8 +204,6 @@ class ARIMAModel(AbstractProbabilisticStatsForecastModel):
|
|
|
204
204
|
This significantly speeds up fitting and usually leads to no change in accuracy.
|
|
205
205
|
"""
|
|
206
206
|
|
|
207
|
-
# TODO: This model requires statsforecast >= 1.5.0, so it will only be available after we upgrade the dependency
|
|
208
|
-
|
|
209
207
|
allowed_local_model_args = [
|
|
210
208
|
"order",
|
|
211
209
|
"seasonal_order",
|
|
@@ -491,8 +489,7 @@ class AbstractConformalizedStatsForecastModel(AbstractStatsForecastModel):
|
|
|
491
489
|
return pd.DataFrame(predictions)
|
|
492
490
|
|
|
493
491
|
|
|
494
|
-
|
|
495
|
-
class AutoCESModel(AbstractConformalizedStatsForecastModel):
|
|
492
|
+
class AutoCESModel(AbstractProbabilisticStatsForecastModel):
|
|
496
493
|
"""Forecasting with an Complex Exponential Smoothing model where the model selection is performed using the
|
|
497
494
|
Akaike Information Criterion.
|
|
498
495
|
|
|
@@ -10,6 +10,7 @@ from autogluon.timeseries.metrics import TimeSeriesScorer
|
|
|
10
10
|
|
|
11
11
|
from . import (
|
|
12
12
|
ADIDAModel,
|
|
13
|
+
ARIMAModel,
|
|
13
14
|
AutoARIMAModel,
|
|
14
15
|
AutoCESModel,
|
|
15
16
|
AutoETSModel,
|
|
@@ -38,9 +39,6 @@ from . import (
|
|
|
38
39
|
from .abstract import AbstractTimeSeriesModel
|
|
39
40
|
from .multi_window.multi_window_model import MultiWindowBacktestingModel
|
|
40
41
|
|
|
41
|
-
# TODO: Enable ARIMAModel after upgrading to StatsForecast >=1.5.0 - currently ARIMA model is broken
|
|
42
|
-
|
|
43
|
-
|
|
44
42
|
logger = logging.getLogger(__name__)
|
|
45
43
|
|
|
46
44
|
ModelHyperparameters = Dict[str, Any]
|
|
@@ -68,6 +66,7 @@ MODEL_TYPES = dict(
|
|
|
68
66
|
NPTS=NPTSModel,
|
|
69
67
|
Theta=ThetaModel,
|
|
70
68
|
ETS=ETSModel,
|
|
69
|
+
ARIMA=ARIMAModel,
|
|
71
70
|
ADIDA=ADIDAModel,
|
|
72
71
|
CrostonSBA=CrostonSBAModel,
|
|
73
72
|
IMAPA=IMAPAModel,
|
autogluon/timeseries/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.2b20240630
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -45,15 +45,16 @@ Requires-Dist: transformers[sentencepiece] <4.41.0,>=4.38.0
|
|
|
45
45
|
Requires-Dist: accelerate <0.22.0,>=0.21.0
|
|
46
46
|
Requires-Dist: gluonts ==0.15.1
|
|
47
47
|
Requires-Dist: networkx <4,>=3.0
|
|
48
|
-
Requires-Dist: statsforecast <1.
|
|
48
|
+
Requires-Dist: statsforecast <1.8,>=1.7.0
|
|
49
49
|
Requires-Dist: mlforecast <0.10.1,>=0.10.0
|
|
50
|
-
Requires-Dist: utilsforecast
|
|
50
|
+
Requires-Dist: utilsforecast <=0.1.9
|
|
51
|
+
Requires-Dist: fugue >=0.9.0
|
|
51
52
|
Requires-Dist: tqdm <5,>=4.38
|
|
52
53
|
Requires-Dist: orjson ~=3.9
|
|
53
54
|
Requires-Dist: tensorboard <3,>=2.9
|
|
54
|
-
Requires-Dist: autogluon.core[raytune] ==1.1.
|
|
55
|
-
Requires-Dist: autogluon.common ==1.1.
|
|
56
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.
|
|
55
|
+
Requires-Dist: autogluon.core[raytune] ==1.1.2b20240630
|
|
56
|
+
Requires-Dist: autogluon.common ==1.1.2b20240630
|
|
57
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.2b20240630
|
|
57
58
|
Provides-Extra: all
|
|
58
59
|
Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
|
|
59
60
|
Provides-Extra: chronos-onnx
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
autogluon.timeseries-1.1.
|
|
1
|
+
autogluon.timeseries-1.1.2b20240630-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
|
4
4
|
autogluon/timeseries/learner.py,sha256=IYXpJSDyTzjZXjKL_SrTujt5Uke83mSJFA0sMj25_sM,13828
|
|
5
5
|
autogluon/timeseries/predictor.py,sha256=th-UrZx2-4tJ3dnw_XUBwBW_obrfa_YC4VtY9bRfv8A,83073
|
|
6
6
|
autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
|
|
7
|
-
autogluon/timeseries/version.py,sha256=
|
|
7
|
+
autogluon/timeseries/version.py,sha256=tsSZFFqnntoNYqaQUlD9RskgPH9_RpjAETMvRf_8vIk,90
|
|
8
8
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
|
9
9
|
autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
|
|
10
10
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
@@ -15,7 +15,7 @@ autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEse
|
|
|
15
15
|
autogluon/timeseries/metrics/quantile.py,sha256=owMbOAJYwVyzdRkrJpuCGUXk937GU843QndCZyp5n9Y,3967
|
|
16
16
|
autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgiooEccrf2Kc,912
|
|
17
17
|
autogluon/timeseries/models/__init__.py,sha256=WKV7DIpJkrwEj0cUfscESp67Ydap9hAqaNTYvgi2EIA,1303
|
|
18
|
-
autogluon/timeseries/models/presets.py,sha256=
|
|
18
|
+
autogluon/timeseries/models/presets.py,sha256=lC-FGlJdpa6yg465Ks9FlTE0I4xfWt-LKNYilLrIep4,11637
|
|
19
19
|
autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
|
|
20
20
|
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=MvLF529b3fo0icgle-qmS0oce-ftiiQ1jPBLnY-39fk,23435
|
|
21
21
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
|
@@ -37,7 +37,7 @@ autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0
|
|
|
37
37
|
autogluon/timeseries/models/local/abstract_local_model.py,sha256=JfjDXOSBgD_10JrIq5nWS038-4moRNI0001BLta8nRs,11723
|
|
38
38
|
autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
|
|
39
39
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
|
40
|
-
autogluon/timeseries/models/local/statsforecast.py,sha256=
|
|
40
|
+
autogluon/timeseries/models/local/statsforecast.py,sha256=e5rxHPGabgvr6kg_PHNYSNyRYtblmwp140R7AY5sQvY,32764
|
|
41
41
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
|
42
42
|
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=HiujLv8MJ31fWxRM5iXG2PzobFn4Mus0nJPu0MP2Rw4,11374
|
|
43
43
|
autogluon/timeseries/trainer/__init__.py,sha256=lxiOT-Gc6BEnr_yWQqra85kEngeM_wtH2SCaRbmC_qE,170
|
|
@@ -52,11 +52,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
|
|
|
52
52
|
autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
|
|
53
53
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
|
|
54
54
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
|
|
55
|
-
autogluon.timeseries-1.1.
|
|
56
|
-
autogluon.timeseries-1.1.
|
|
57
|
-
autogluon.timeseries-1.1.
|
|
58
|
-
autogluon.timeseries-1.1.
|
|
59
|
-
autogluon.timeseries-1.1.
|
|
60
|
-
autogluon.timeseries-1.1.
|
|
61
|
-
autogluon.timeseries-1.1.
|
|
62
|
-
autogluon.timeseries-1.1.
|
|
55
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
56
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/METADATA,sha256=3_tQSBYwqI7qQbfeAtVdXp4_M3xZw2ErHGlmD9bxlKI,12500
|
|
57
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
58
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
59
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
60
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
61
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
62
|
+
autogluon.timeseries-1.1.2b20240630.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|