autogluon.timeseries 1.1.2b20240628__py3-none-any.whl → 1.1.2b20240629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -204,8 +204,6 @@ class ARIMAModel(AbstractProbabilisticStatsForecastModel):
204
204
  This significantly speeds up fitting and usually leads to no change in accuracy.
205
205
  """
206
206
 
207
- # TODO: This model requires statsforecast >= 1.5.0, so it will only be available after we upgrade the dependency
208
-
209
207
  allowed_local_model_args = [
210
208
  "order",
211
209
  "seasonal_order",
@@ -491,8 +489,7 @@ class AbstractConformalizedStatsForecastModel(AbstractStatsForecastModel):
491
489
  return pd.DataFrame(predictions)
492
490
 
493
491
 
494
- # TODO: Starting from StatsForecast v1.5.0, AutoCES can inherit from AbstractProbabilisticStatsForecastModel
495
- class AutoCESModel(AbstractConformalizedStatsForecastModel):
492
+ class AutoCESModel(AbstractProbabilisticStatsForecastModel):
496
493
  """Forecasting with an Complex Exponential Smoothing model where the model selection is performed using the
497
494
  Akaike Information Criterion.
498
495
 
@@ -10,6 +10,7 @@ from autogluon.timeseries.metrics import TimeSeriesScorer
10
10
 
11
11
  from . import (
12
12
  ADIDAModel,
13
+ ARIMAModel,
13
14
  AutoARIMAModel,
14
15
  AutoCESModel,
15
16
  AutoETSModel,
@@ -38,9 +39,6 @@ from . import (
38
39
  from .abstract import AbstractTimeSeriesModel
39
40
  from .multi_window.multi_window_model import MultiWindowBacktestingModel
40
41
 
41
- # TODO: Enable ARIMAModel after upgrading to StatsForecast >=1.5.0 - currently ARIMA model is broken
42
-
43
-
44
42
  logger = logging.getLogger(__name__)
45
43
 
46
44
  ModelHyperparameters = Dict[str, Any]
@@ -68,6 +66,7 @@ MODEL_TYPES = dict(
68
66
  NPTS=NPTSModel,
69
67
  Theta=ThetaModel,
70
68
  ETS=ETSModel,
69
+ ARIMA=ARIMAModel,
71
70
  ADIDA=ADIDAModel,
72
71
  CrostonSBA=CrostonSBAModel,
73
72
  IMAPA=IMAPAModel,
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20240628'
2
+ __version__ = '1.1.2b20240629'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.2b20240628
3
+ Version: 1.1.2b20240629
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -45,15 +45,16 @@ Requires-Dist: transformers[sentencepiece] <4.41.0,>=4.38.0
45
45
  Requires-Dist: accelerate <0.22.0,>=0.21.0
46
46
  Requires-Dist: gluonts ==0.15.1
47
47
  Requires-Dist: networkx <4,>=3.0
48
- Requires-Dist: statsforecast <1.5,>=1.4.0
48
+ Requires-Dist: statsforecast <1.8,>=1.7.0
49
49
  Requires-Dist: mlforecast <0.10.1,>=0.10.0
50
- Requires-Dist: utilsforecast <0.0.11,>=0.0.10
50
+ Requires-Dist: utilsforecast <=0.1.9
51
+ Requires-Dist: fugue >=0.9.0
51
52
  Requires-Dist: tqdm <5,>=4.38
52
53
  Requires-Dist: orjson ~=3.9
53
54
  Requires-Dist: tensorboard <3,>=2.9
54
- Requires-Dist: autogluon.core[raytune] ==1.1.2b20240628
55
- Requires-Dist: autogluon.common ==1.1.2b20240628
56
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.2b20240628
55
+ Requires-Dist: autogluon.core[raytune] ==1.1.2b20240629
56
+ Requires-Dist: autogluon.common ==1.1.2b20240629
57
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.2b20240629
57
58
  Provides-Extra: all
58
59
  Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
59
60
  Provides-Extra: chronos-onnx
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.1.2b20240628-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.2b20240629-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=IYXpJSDyTzjZXjKL_SrTujt5Uke83mSJFA0sMj25_sM,13828
5
5
  autogluon/timeseries/predictor.py,sha256=th-UrZx2-4tJ3dnw_XUBwBW_obrfa_YC4VtY9bRfv8A,83073
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=u-lFYlFBnUfVhevAgSucKzGQ78ZtEpdrt70OQYhB9dc,90
7
+ autogluon/timeseries/version.py,sha256=R1-1IyDLlTj15efiMOQmDfuUvrRTPAL2GAQZFIWMm-I,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=94-yL9teDHKs2irWjP3kpewI7FE1ChYCgEgz9XHJ6gc,1965
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -15,7 +15,7 @@ autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEse
15
15
  autogluon/timeseries/metrics/quantile.py,sha256=owMbOAJYwVyzdRkrJpuCGUXk937GU843QndCZyp5n9Y,3967
16
16
  autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgiooEccrf2Kc,912
17
17
  autogluon/timeseries/models/__init__.py,sha256=WKV7DIpJkrwEj0cUfscESp67Ydap9hAqaNTYvgi2EIA,1303
18
- autogluon/timeseries/models/presets.py,sha256=USiRv7C1xT0FwfXP7RG1y3hp1f_3f_ndFMEk4Iy0exE,11702
18
+ autogluon/timeseries/models/presets.py,sha256=lC-FGlJdpa6yg465Ks9FlTE0I4xfWt-LKNYilLrIep4,11637
19
19
  autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
20
20
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=MvLF529b3fo0icgle-qmS0oce-ftiiQ1jPBLnY-39fk,23435
21
21
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
@@ -37,7 +37,7 @@ autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0
37
37
  autogluon/timeseries/models/local/abstract_local_model.py,sha256=JfjDXOSBgD_10JrIq5nWS038-4moRNI0001BLta8nRs,11723
38
38
  autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
39
39
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
40
- autogluon/timeseries/models/local/statsforecast.py,sha256=oDYKKM2LZXEQLhPLEgZZWhvSEC1iE1wBexpl8P-Cxwc,32991
40
+ autogluon/timeseries/models/local/statsforecast.py,sha256=e5rxHPGabgvr6kg_PHNYSNyRYtblmwp140R7AY5sQvY,32764
41
41
  autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
42
42
  autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=HiujLv8MJ31fWxRM5iXG2PzobFn4Mus0nJPu0MP2Rw4,11374
43
43
  autogluon/timeseries/trainer/__init__.py,sha256=lxiOT-Gc6BEnr_yWQqra85kEngeM_wtH2SCaRbmC_qE,170
@@ -52,11 +52,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbj
52
52
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
53
53
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
54
54
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
55
- autogluon.timeseries-1.1.2b20240628.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
- autogluon.timeseries-1.1.2b20240628.dist-info/METADATA,sha256=RA9huUk4whG69P04mgP_LjRnL5fy81F0RYVBYYis2pI,12480
57
- autogluon.timeseries-1.1.2b20240628.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
- autogluon.timeseries-1.1.2b20240628.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
- autogluon.timeseries-1.1.2b20240628.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
- autogluon.timeseries-1.1.2b20240628.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
- autogluon.timeseries-1.1.2b20240628.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
- autogluon.timeseries-1.1.2b20240628.dist-info/RECORD,,
55
+ autogluon.timeseries-1.1.2b20240629.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
+ autogluon.timeseries-1.1.2b20240629.dist-info/METADATA,sha256=qpN9u_JEiiTVXDYhxfb2FP8QaNmFW_9AfmNfQWoKSnc,12500
57
+ autogluon.timeseries-1.1.2b20240629.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
+ autogluon.timeseries-1.1.2b20240629.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
+ autogluon.timeseries-1.1.2b20240629.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
+ autogluon.timeseries-1.1.2b20240629.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
+ autogluon.timeseries-1.1.2b20240629.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
+ autogluon.timeseries-1.1.2b20240629.dist-info/RECORD,,