autogluon.timeseries 1.1.0b20240413__py3-none-any.whl → 1.1.0b20240414__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -631,7 +631,11 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
631
631
  This argument has no effect if ``tuning_data`` is provided.
632
632
  refit_every_n_windows: int or None, default = 1
633
633
  When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
634
- windows. If set to ``None``, model will only be fit once for the first validation window.
634
+ windows, where the number of validation windows is specified by `num_val_windows`. Note that in the
635
+ default setting where `num_val_windows=1`, this argument has no effect.
636
+
637
+ If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
638
+ `refit_every_n_windows=1`, i.e., all models will be refit for each validation window.
635
639
  refit_full : bool, default = False
636
640
  If True, after training is complete, AutoGluon will attempt to re-train all models using all of training
637
641
  data (including the data initially reserved for validation). This argument has no effect if ``tuning_data``
@@ -717,6 +721,12 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
717
721
  if num_val_windows == 0 and tuning_data is None:
718
722
  raise ValueError("Please set num_val_windows >= 1 or provide custom tuning_data")
719
723
 
724
+ if num_val_windows <= 1 and refit_every_n_windows > 1:
725
+ logger.warning(
726
+ f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to {num_val_windows}."
727
+ " Refit_every_n_windows will have no effect."
728
+ )
729
+
720
730
  if not skip_model_selection:
721
731
  train_data = self._filter_useless_train_data(
722
732
  train_data, num_val_windows=num_val_windows, val_step_size=val_step_size
@@ -7,14 +7,12 @@ import re
7
7
  import sys
8
8
  import warnings
9
9
 
10
- from statsmodels.tools.sm_exceptions import ConvergenceWarning, ValueWarning
11
-
12
10
  __all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
13
11
 
14
12
 
15
13
  @contextlib.contextmanager
16
14
  def warning_filter(all_warnings: bool = False):
17
- categories = [RuntimeWarning, UserWarning, ConvergenceWarning, ValueWarning, FutureWarning]
15
+ categories = [RuntimeWarning, UserWarning, FutureWarning]
18
16
  if all_warnings:
19
17
  categories.append(Warning)
20
18
  with warnings.catch_warnings():
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.0b20240413'
2
+ __version__ = '1.1.0b20240414'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.0b20240413
3
+ Version: 1.1.0b20240414
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -43,7 +43,6 @@ Requires-Dist: lightning <2.2,>=2.1
43
43
  Requires-Dist: pytorch-lightning <2.2,>=2.1
44
44
  Requires-Dist: transformers[sentencepiece] <4.39.0,>=4.38.0
45
45
  Requires-Dist: accelerate <0.22.0,>=0.21.0
46
- Requires-Dist: statsmodels <0.15,>=0.13.0
47
46
  Requires-Dist: gluonts <0.14.4,>=0.14.0
48
47
  Requires-Dist: networkx <4,>=3.0
49
48
  Requires-Dist: statsforecast <1.5,>=1.4.0
@@ -52,9 +51,9 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
52
51
  Requires-Dist: tqdm <5,>=4.38
53
52
  Requires-Dist: orjson ~=3.9
54
53
  Requires-Dist: tensorboard <3,>=2.9
55
- Requires-Dist: autogluon.core[raytune] ==1.1.0b20240413
56
- Requires-Dist: autogluon.common ==1.1.0b20240413
57
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240413
54
+ Requires-Dist: autogluon.core[raytune] ==1.1.0b20240414
55
+ Requires-Dist: autogluon.common ==1.1.0b20240414
56
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240414
58
57
  Provides-Extra: all
59
58
  Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
60
59
  Provides-Extra: chronos-onnx
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.1.0b20240413-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.0b20240414-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=IYXpJSDyTzjZXjKL_SrTujt5Uke83mSJFA0sMj25_sM,13828
5
- autogluon/timeseries/predictor.py,sha256=w9YWluyCVoFabeKOvfV7GiPNe7Z7pV2JDjOt8mXUdJo,81219
5
+ autogluon/timeseries/predictor.py,sha256=9PGGTbmYfkl3JQ2n-9T0Ucyfdiyq6gX9WhMDZ1cM-9U,81823
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=ETLCo_tdf4OsWKQFt1lRtqCdrOfmJJBEG_xQxg4cx_8,90
7
+ autogluon/timeseries/version.py,sha256=Poy70LftZj-bttK37JGpP5-9yPZZyFx8O_OxUewqYXk,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=ZVV8BsnGnnHPgjBtJBqF-H35MYUdzRBQ8FP7zA3_11g,1949
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -46,17 +46,17 @@ autogluon/timeseries/trainer/auto_trainer.py,sha256=psJFZBwWWPlLjNwAgvO4OUJXsRW1
46
46
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
47
  autogluon/timeseries/utils/features.py,sha256=kG1xin3VCjtLwfaDkxlGKaesS7Ah-hIvsUNdwToLxYY,19492
48
48
  autogluon/timeseries/utils/forecast.py,sha256=p0WKM9Q0nLAwwmCgYZI1zi9mCOWXWJfllEt2lPRQl4M,1882
49
- autogluon/timeseries/utils/warning_filters.py,sha256=ngjmfv21zIwTG-7VNZT-NkaSR7ssnoNtUwcXCXANZ4A,2076
49
+ autogluon/timeseries/utils/warning_filters.py,sha256=HMXNDo9jOUdf9wvyp-Db55xTq_Ctj6uso7qPhngoJPQ,1964
50
50
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
51
51
  autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
52
52
  autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
53
53
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
54
54
  autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
55
- autogluon.timeseries-1.1.0b20240413.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
- autogluon.timeseries-1.1.0b20240413.dist-info/METADATA,sha256=EIo6XGf1Fnl2ulkW2Yd9Cn1_Dlx1Kecau4H-yRO7vKs,12530
57
- autogluon.timeseries-1.1.0b20240413.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
- autogluon.timeseries-1.1.0b20240413.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
- autogluon.timeseries-1.1.0b20240413.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
- autogluon.timeseries-1.1.0b20240413.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
- autogluon.timeseries-1.1.0b20240413.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
- autogluon.timeseries-1.1.0b20240413.dist-info/RECORD,,
55
+ autogluon.timeseries-1.1.0b20240414.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
+ autogluon.timeseries-1.1.0b20240414.dist-info/METADATA,sha256=WXC5Hg9xK24Vwmt8QBeX8YpwrIwbNAWHayVnb_Kzx6Q,12488
57
+ autogluon.timeseries-1.1.0b20240414.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
+ autogluon.timeseries-1.1.0b20240414.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
+ autogluon.timeseries-1.1.0b20240414.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
+ autogluon.timeseries-1.1.0b20240414.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
+ autogluon.timeseries-1.1.0b20240414.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
+ autogluon.timeseries-1.1.0b20240414.dist-info/RECORD,,