autogluon.timeseries 1.1.0b20240412__py3-none-any.whl → 1.1.0b20240414__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +1 -1
- autogluon/timeseries/models/gluonts/abstract_gluonts.py +26 -4
- autogluon/timeseries/models/gluonts/torch/models.py +0 -2
- autogluon/timeseries/predictor.py +11 -1
- autogluon/timeseries/utils/warning_filters.py +1 -3
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/METADATA +4 -5
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/RECORD +15 -15
- /autogluon.timeseries-1.1.0b20240412-py3.8-nspkg.pth → /autogluon.timeseries-1.1.0b20240414-py3.8-nspkg.pth +0 -0
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.1.0b20240412.dist-info → autogluon.timeseries-1.1.0b20240414.dist-info}/zip-safe +0 -0
|
@@ -337,7 +337,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
|
337
337
|
Seasonal naive forecast for short series, if there are any in the dataset.
|
|
338
338
|
"""
|
|
339
339
|
ts_lengths = data.num_timesteps_per_item()
|
|
340
|
-
short_series = ts_lengths.index[ts_lengths <= self._sum_of_differences]
|
|
340
|
+
short_series = ts_lengths.index[ts_lengths <= self._sum_of_differences + 1]
|
|
341
341
|
if len(short_series) > 0:
|
|
342
342
|
logger.warning(
|
|
343
343
|
f"Warning: {len(short_series)} time series ({len(short_series) / len(ts_lengths):.1%}) are shorter "
|
|
@@ -25,6 +25,7 @@ from autogluon.tabular.models.tabular_nn.utils.categorical_encoders import (
|
|
|
25
25
|
)
|
|
26
26
|
from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
|
|
27
27
|
from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
|
|
28
|
+
from autogluon.timeseries.utils.datetime import norm_freq_str
|
|
28
29
|
from autogluon.timeseries.utils.forecast import get_forecast_horizon_index_ts_dataframe
|
|
29
30
|
from autogluon.timeseries.utils.warning_filters import disable_root_logger, warning_filter
|
|
30
31
|
|
|
@@ -38,11 +39,10 @@ gts_logger = logging.getLogger(gluonts.__name__)
|
|
|
38
39
|
class SimpleGluonTSDataset(GluonTSDataset):
|
|
39
40
|
"""Wrapper for TimeSeriesDataFrame that is compatible with the GluonTS Dataset API."""
|
|
40
41
|
|
|
41
|
-
_dummy_gluonts_freq = "D"
|
|
42
|
-
|
|
43
42
|
def __init__(
|
|
44
43
|
self,
|
|
45
44
|
target_df: TimeSeriesDataFrame,
|
|
45
|
+
freq: str,
|
|
46
46
|
target_column: str = "target",
|
|
47
47
|
feat_static_cat: Optional[np.ndarray] = None,
|
|
48
48
|
feat_static_real: Optional[np.ndarray] = None,
|
|
@@ -62,6 +62,7 @@ class SimpleGluonTSDataset(GluonTSDataset):
|
|
|
62
62
|
self.feat_dynamic_real = self._astype(feat_dynamic_real, dtype=np.float32)
|
|
63
63
|
self.past_feat_dynamic_cat = self._astype(past_feat_dynamic_cat, dtype=np.int64)
|
|
64
64
|
self.past_feat_dynamic_real = self._astype(past_feat_dynamic_real, dtype=np.float32)
|
|
65
|
+
self.freq = self._get_freq_for_period(freq)
|
|
65
66
|
|
|
66
67
|
# Necessary to compute indptr for known_covariates at prediction time
|
|
67
68
|
self.includes_future = includes_future
|
|
@@ -83,6 +84,24 @@ class SimpleGluonTSDataset(GluonTSDataset):
|
|
|
83
84
|
else:
|
|
84
85
|
return array.astype(dtype)
|
|
85
86
|
|
|
87
|
+
@staticmethod
|
|
88
|
+
def _get_freq_for_period(freq: str) -> str:
|
|
89
|
+
"""Convert freq to format compatible with pd.Period.
|
|
90
|
+
|
|
91
|
+
For example, ME freq must be converted to M when creating a pd.Period.
|
|
92
|
+
"""
|
|
93
|
+
offset = pd.tseries.frequencies.to_offset(freq)
|
|
94
|
+
freq_name = norm_freq_str(offset)
|
|
95
|
+
if freq_name == "SME":
|
|
96
|
+
# Replace unsupported frequency "SME" with "2W"
|
|
97
|
+
return "2W"
|
|
98
|
+
elif freq_name == "bh":
|
|
99
|
+
# Replace unsupported frequency "bh" with dummy value "Y"
|
|
100
|
+
return "Y"
|
|
101
|
+
else:
|
|
102
|
+
freq_name_for_period = {"YE": "Y", "QE": "Q", "ME": "M"}.get(freq_name, freq_name)
|
|
103
|
+
return f"{offset.n}{freq_name_for_period}"
|
|
104
|
+
|
|
86
105
|
def __len__(self):
|
|
87
106
|
return len(self.indptr) - 1 # noqa
|
|
88
107
|
|
|
@@ -93,7 +112,7 @@ class SimpleGluonTSDataset(GluonTSDataset):
|
|
|
93
112
|
# GluonTS expects item_id to be a string
|
|
94
113
|
ts = {
|
|
95
114
|
FieldName.ITEM_ID: str(self.item_ids[j]),
|
|
96
|
-
FieldName.START: pd.Period(self.start_timestamps.iloc[j], freq=self.
|
|
115
|
+
FieldName.START: pd.Period(self.start_timestamps.iloc[j], freq=self.freq),
|
|
97
116
|
FieldName.TARGET: self.target_array[start_idx:end_idx],
|
|
98
117
|
}
|
|
99
118
|
if self.feat_static_cat is not None:
|
|
@@ -141,6 +160,8 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
|
|
141
160
|
"""
|
|
142
161
|
|
|
143
162
|
gluonts_model_path = "gluon_ts"
|
|
163
|
+
# we pass dummy freq compatible with pandas 2.1 & 2.2 to GluonTS models
|
|
164
|
+
_dummy_gluonts_freq = "D"
|
|
144
165
|
# default number of samples for prediction
|
|
145
166
|
default_num_samples: int = 250
|
|
146
167
|
supports_cat_covariates: bool = False
|
|
@@ -344,7 +365,7 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
|
|
344
365
|
init_args.setdefault("early_stopping_patience", 20)
|
|
345
366
|
init_args.update(
|
|
346
367
|
dict(
|
|
347
|
-
freq=self.
|
|
368
|
+
freq=self._dummy_gluonts_freq,
|
|
348
369
|
prediction_length=self.prediction_length,
|
|
349
370
|
quantiles=self.quantile_levels,
|
|
350
371
|
callbacks=self.callbacks,
|
|
@@ -475,6 +496,7 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
|
|
475
496
|
|
|
476
497
|
return SimpleGluonTSDataset(
|
|
477
498
|
target_df=time_series_df[[self.target]],
|
|
499
|
+
freq=self.freq,
|
|
478
500
|
target_column=self.target,
|
|
479
501
|
feat_static_cat=feat_static_cat,
|
|
480
502
|
feat_static_real=feat_static_real,
|
|
@@ -423,6 +423,4 @@ class WaveNetModel(AbstractGluonTSModel):
|
|
|
423
423
|
init_kwargs.setdefault("seasonality", get_seasonality(self.freq))
|
|
424
424
|
init_kwargs.setdefault("time_features", get_time_features_for_frequency(self.freq))
|
|
425
425
|
init_kwargs.setdefault("num_parallel_samples", self.default_num_samples)
|
|
426
|
-
# WaveNet model fails if an unsupported frequency such as "SM" is provided. We provide a dummy freq instead
|
|
427
|
-
init_kwargs["freq"] = "D"
|
|
428
426
|
return init_kwargs
|
|
@@ -631,7 +631,11 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
|
|
|
631
631
|
This argument has no effect if ``tuning_data`` is provided.
|
|
632
632
|
refit_every_n_windows: int or None, default = 1
|
|
633
633
|
When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
|
|
634
|
-
windows
|
|
634
|
+
windows, where the number of validation windows is specified by `num_val_windows`. Note that in the
|
|
635
|
+
default setting where `num_val_windows=1`, this argument has no effect.
|
|
636
|
+
|
|
637
|
+
If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
|
|
638
|
+
`refit_every_n_windows=1`, i.e., all models will be refit for each validation window.
|
|
635
639
|
refit_full : bool, default = False
|
|
636
640
|
If True, after training is complete, AutoGluon will attempt to re-train all models using all of training
|
|
637
641
|
data (including the data initially reserved for validation). This argument has no effect if ``tuning_data``
|
|
@@ -717,6 +721,12 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
|
|
|
717
721
|
if num_val_windows == 0 and tuning_data is None:
|
|
718
722
|
raise ValueError("Please set num_val_windows >= 1 or provide custom tuning_data")
|
|
719
723
|
|
|
724
|
+
if num_val_windows <= 1 and refit_every_n_windows > 1:
|
|
725
|
+
logger.warning(
|
|
726
|
+
f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to {num_val_windows}."
|
|
727
|
+
" Refit_every_n_windows will have no effect."
|
|
728
|
+
)
|
|
729
|
+
|
|
720
730
|
if not skip_model_selection:
|
|
721
731
|
train_data = self._filter_useless_train_data(
|
|
722
732
|
train_data, num_val_windows=num_val_windows, val_step_size=val_step_size
|
|
@@ -7,14 +7,12 @@ import re
|
|
|
7
7
|
import sys
|
|
8
8
|
import warnings
|
|
9
9
|
|
|
10
|
-
from statsmodels.tools.sm_exceptions import ConvergenceWarning, ValueWarning
|
|
11
|
-
|
|
12
10
|
__all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
|
|
13
11
|
|
|
14
12
|
|
|
15
13
|
@contextlib.contextmanager
|
|
16
14
|
def warning_filter(all_warnings: bool = False):
|
|
17
|
-
categories = [RuntimeWarning, UserWarning,
|
|
15
|
+
categories = [RuntimeWarning, UserWarning, FutureWarning]
|
|
18
16
|
if all_warnings:
|
|
19
17
|
categories.append(Warning)
|
|
20
18
|
with warnings.catch_warnings():
|
autogluon/timeseries/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.0b20240414
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -43,7 +43,6 @@ Requires-Dist: lightning <2.2,>=2.1
|
|
|
43
43
|
Requires-Dist: pytorch-lightning <2.2,>=2.1
|
|
44
44
|
Requires-Dist: transformers[sentencepiece] <4.39.0,>=4.38.0
|
|
45
45
|
Requires-Dist: accelerate <0.22.0,>=0.21.0
|
|
46
|
-
Requires-Dist: statsmodels <0.15,>=0.13.0
|
|
47
46
|
Requires-Dist: gluonts <0.14.4,>=0.14.0
|
|
48
47
|
Requires-Dist: networkx <4,>=3.0
|
|
49
48
|
Requires-Dist: statsforecast <1.5,>=1.4.0
|
|
@@ -52,9 +51,9 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
|
|
|
52
51
|
Requires-Dist: tqdm <5,>=4.38
|
|
53
52
|
Requires-Dist: orjson ~=3.9
|
|
54
53
|
Requires-Dist: tensorboard <3,>=2.9
|
|
55
|
-
Requires-Dist: autogluon.core[raytune] ==1.1.
|
|
56
|
-
Requires-Dist: autogluon.common ==1.1.
|
|
57
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.
|
|
54
|
+
Requires-Dist: autogluon.core[raytune] ==1.1.0b20240414
|
|
55
|
+
Requires-Dist: autogluon.common ==1.1.0b20240414
|
|
56
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240414
|
|
58
57
|
Provides-Extra: all
|
|
59
58
|
Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
|
|
60
59
|
Provides-Extra: chronos-onnx
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
autogluon.timeseries-1.1.
|
|
1
|
+
autogluon.timeseries-1.1.0b20240414-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
|
4
4
|
autogluon/timeseries/learner.py,sha256=IYXpJSDyTzjZXjKL_SrTujt5Uke83mSJFA0sMj25_sM,13828
|
|
5
|
-
autogluon/timeseries/predictor.py,sha256=
|
|
5
|
+
autogluon/timeseries/predictor.py,sha256=9PGGTbmYfkl3JQ2n-9T0Ucyfdiyq6gX9WhMDZ1cM-9U,81823
|
|
6
6
|
autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
|
|
7
|
-
autogluon/timeseries/version.py,sha256=
|
|
7
|
+
autogluon/timeseries/version.py,sha256=Poy70LftZj-bttK37JGpP5-9yPZZyFx8O_OxUewqYXk,90
|
|
8
8
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
|
9
9
|
autogluon/timeseries/configs/presets_configs.py,sha256=ZVV8BsnGnnHPgjBtJBqF-H35MYUdzRBQ8FP7zA3_11g,1949
|
|
10
10
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
@@ -20,7 +20,7 @@ autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ8
|
|
|
20
20
|
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=MvLF529b3fo0icgle-qmS0oce-ftiiQ1jPBLnY-39fk,23435
|
|
21
21
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
|
22
22
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
|
23
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
|
23
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=v-0-kTlWSm2BCRT60JvroKtoQefSDEsvtubqlRq3pmQ,31303
|
|
24
24
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
|
|
25
25
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
|
26
26
|
autogluon/timeseries/models/chronos/model.py,sha256=0ZxOpGyx7MmXYDr9zeDt6-rIu50Bm7ssR9zTIvd6vmQ,14659
|
|
@@ -30,9 +30,9 @@ autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQ
|
|
|
30
30
|
autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
|
|
31
31
|
autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=5HvZuW5osgsZg3V69k82nKEOy_YgeH1JTfQa7F3cU7s,7220
|
|
32
32
|
autogluon/timeseries/models/gluonts/__init__.py,sha256=M8PV9ZE4WpteScMobXM6RH1Udb1AZiHHtj2g5GQL3TU,329
|
|
33
|
-
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=
|
|
33
|
+
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=X4KChuSVSoxLOcrto1SgwAgiHeCuE5jFOaX8GxdBTeg,34017
|
|
34
34
|
autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
35
|
-
autogluon/timeseries/models/gluonts/torch/models.py,sha256=
|
|
35
|
+
autogluon/timeseries/models/gluonts/torch/models.py,sha256=Eo_AI5bWpHx3_05lnates4tnessBrUrVkUAyGoAb0zk,19780
|
|
36
36
|
autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0LPPOwtXwmb1ErohQ,756
|
|
37
37
|
autogluon/timeseries/models/local/abstract_local_model.py,sha256=5wvwt7d99kw-PTDnuT45uoCeXk6POjUArCAwUj8mSok,11836
|
|
38
38
|
autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
|
|
@@ -46,17 +46,17 @@ autogluon/timeseries/trainer/auto_trainer.py,sha256=psJFZBwWWPlLjNwAgvO4OUJXsRW1
|
|
|
46
46
|
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
47
47
|
autogluon/timeseries/utils/features.py,sha256=kG1xin3VCjtLwfaDkxlGKaesS7Ah-hIvsUNdwToLxYY,19492
|
|
48
48
|
autogluon/timeseries/utils/forecast.py,sha256=p0WKM9Q0nLAwwmCgYZI1zi9mCOWXWJfllEt2lPRQl4M,1882
|
|
49
|
-
autogluon/timeseries/utils/warning_filters.py,sha256=
|
|
49
|
+
autogluon/timeseries/utils/warning_filters.py,sha256=HMXNDo9jOUdf9wvyp-Db55xTq_Ctj6uso7qPhngoJPQ,1964
|
|
50
50
|
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
|
51
51
|
autogluon/timeseries/utils/datetime/base.py,sha256=3NdsH3NDq4cVAOSoy3XpaNixyNlbjy4DJ_YYOGuu9x4,1341
|
|
52
52
|
autogluon/timeseries/utils/datetime/lags.py,sha256=GoLtvcZ8oKb3QkoBJ9E59LSPLOP7Qjxrr2UmMSZgjyw,5909
|
|
53
53
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=h_4w00iEytAz_N_EpCENQ8RCXy7KQITczrYjBgVqWkQ,764
|
|
54
54
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=PAXbYbQ0z_5GFbkxSNi41zLY_2-U3x0Ynm1m_WhdtGc,2572
|
|
55
|
-
autogluon.timeseries-1.1.
|
|
56
|
-
autogluon.timeseries-1.1.
|
|
57
|
-
autogluon.timeseries-1.1.
|
|
58
|
-
autogluon.timeseries-1.1.
|
|
59
|
-
autogluon.timeseries-1.1.
|
|
60
|
-
autogluon.timeseries-1.1.
|
|
61
|
-
autogluon.timeseries-1.1.
|
|
62
|
-
autogluon.timeseries-1.1.
|
|
55
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
56
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/METADATA,sha256=WXC5Hg9xK24Vwmt8QBeX8YpwrIwbNAWHayVnb_Kzx6Q,12488
|
|
57
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
58
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
59
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
60
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
61
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
62
|
+
autogluon.timeseries-1.1.0b20240414.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|