autogluon.timeseries 1.1.0b20240410__py3-none-any.whl → 1.1.0b20240411__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/dataset/ts_dataframe.py +6 -6
- autogluon/timeseries/learner.py +6 -1
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py +3 -22
- autogluon/timeseries/models/chronos/model.py +1 -1
- autogluon/timeseries/models/gluonts/abstract_gluonts.py +4 -10
- autogluon/timeseries/models/local/abstract_local_model.py +1 -1
- autogluon/timeseries/utils/forecast.py +7 -2
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/METADATA +4 -4
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/RECORD +17 -17
- /autogluon.timeseries-1.1.0b20240410-py3.8-nspkg.pth → /autogluon.timeseries-1.1.0b20240411-py3.8-nspkg.pth +0 -0
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.1.0b20240410.dist-info → autogluon.timeseries-1.1.0b20240411.dist-info}/zip-safe +0 -0
|
@@ -759,12 +759,6 @@ class TimeSeriesDataFrame(pd.DataFrame, TimeSeriesDataFrameDeprecatedMixin):
|
|
|
759
759
|
2019-02-07 4.0
|
|
760
760
|
|
|
761
761
|
"""
|
|
762
|
-
if self.freq is None:
|
|
763
|
-
raise ValueError(
|
|
764
|
-
"Please make sure that all time series have a regular index before calling `fill_missing_values`"
|
|
765
|
-
"(for example, using the `convert_frequency` method)."
|
|
766
|
-
)
|
|
767
|
-
|
|
768
762
|
# Convert to pd.DataFrame for faster processing
|
|
769
763
|
df = pd.DataFrame(self)
|
|
770
764
|
|
|
@@ -772,6 +766,12 @@ class TimeSeriesDataFrame(pd.DataFrame, TimeSeriesDataFrameDeprecatedMixin):
|
|
|
772
766
|
if not df.isna().any(axis=None):
|
|
773
767
|
return self
|
|
774
768
|
|
|
769
|
+
if not self.index.is_monotonic_increasing:
|
|
770
|
+
logger.warning(
|
|
771
|
+
"Trying to fill missing values in an unsorted dataframe. "
|
|
772
|
+
"It is highly recommended to call `ts_df.sort_index()` before calling `ts_df.fill_missing_values()`"
|
|
773
|
+
)
|
|
774
|
+
|
|
775
775
|
grouped_df = df.groupby(level=ITEMID, sort=False, group_keys=False)
|
|
776
776
|
if method == "auto":
|
|
777
777
|
filled_df = grouped_df.ffill()
|
autogluon/timeseries/learner.py
CHANGED
|
@@ -43,6 +43,7 @@ class TimeSeriesLearner(AbstractLearner):
|
|
|
43
43
|
self.prediction_length = prediction_length
|
|
44
44
|
self.quantile_levels = kwargs.get("quantile_levels", [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
|
|
45
45
|
self.cache_predictions = cache_predictions
|
|
46
|
+
self.freq: Optional[str] = None
|
|
46
47
|
|
|
47
48
|
self.feature_generator = TimeSeriesFeatureGenerator(
|
|
48
49
|
target=self.target, known_covariates_names=self.known_covariates_names
|
|
@@ -87,6 +88,8 @@ class TimeSeriesLearner(AbstractLearner):
|
|
|
87
88
|
if val_data is not None:
|
|
88
89
|
val_data = self.feature_generator.transform(val_data, data_frame_name="tuning_data")
|
|
89
90
|
|
|
91
|
+
self.freq = train_data.freq
|
|
92
|
+
|
|
90
93
|
trainer_init_kwargs = kwargs.copy()
|
|
91
94
|
trainer_init_kwargs.update(
|
|
92
95
|
dict(
|
|
@@ -155,7 +158,9 @@ class TimeSeriesLearner(AbstractLearner):
|
|
|
155
158
|
f"known_covariates are missing information for the following item_ids: {reprlib.repr(missing_item_ids.to_list())}."
|
|
156
159
|
)
|
|
157
160
|
|
|
158
|
-
forecast_index = get_forecast_horizon_index_ts_dataframe(
|
|
161
|
+
forecast_index = get_forecast_horizon_index_ts_dataframe(
|
|
162
|
+
data, prediction_length=self.prediction_length, freq=self.freq
|
|
163
|
+
)
|
|
159
164
|
try:
|
|
160
165
|
known_covariates = known_covariates.loc[forecast_index]
|
|
161
166
|
except KeyError:
|
|
@@ -174,21 +174,6 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
|
174
174
|
"""
|
|
175
175
|
return df
|
|
176
176
|
|
|
177
|
-
def _add_scale_as_static_feature(self, data: TimeSeriesDataFrame) -> TimeSeriesDataFrame:
|
|
178
|
-
"""Add mean/std of the target column for each series as a static feature."""
|
|
179
|
-
data = data.copy(deep=False)
|
|
180
|
-
scale_features = (
|
|
181
|
-
data[self.target]
|
|
182
|
-
.groupby(ITEMID, sort=False)
|
|
183
|
-
.agg(["mean", "std"])
|
|
184
|
-
.rename(columns={"mean": "__target_mean", "std": "__target_scale"})
|
|
185
|
-
)
|
|
186
|
-
if data.static_features is None:
|
|
187
|
-
data.static_features = scale_features
|
|
188
|
-
else:
|
|
189
|
-
data.static_features = pd.concat([data.static_features, scale_features], axis=1)
|
|
190
|
-
return data
|
|
191
|
-
|
|
192
177
|
@staticmethod
|
|
193
178
|
def _shorten_all_series(mlforecast_df: pd.DataFrame, max_length: int):
|
|
194
179
|
logger.debug(f"Shortening all series to at most {max_length}")
|
|
@@ -285,8 +270,6 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
|
|
|
285
270
|
) -> None:
|
|
286
271
|
from mlforecast import MLForecast
|
|
287
272
|
|
|
288
|
-
train_data = self._add_scale_as_static_feature(train_data)
|
|
289
|
-
|
|
290
273
|
self._check_fit_params()
|
|
291
274
|
fit_start_time = time.time()
|
|
292
275
|
self._train_target_median = train_data[self.target].median()
|
|
@@ -485,7 +468,6 @@ class DirectTabularModel(AbstractMLForecastModel):
|
|
|
485
468
|
known_covariates: Optional[TimeSeriesDataFrame] = None,
|
|
486
469
|
**kwargs,
|
|
487
470
|
) -> TimeSeriesDataFrame:
|
|
488
|
-
data = self._add_scale_as_static_feature(data)
|
|
489
471
|
original_item_id_order = data.item_ids
|
|
490
472
|
data, known_covariates, forecast_for_short_series = self._remove_short_ts_and_generate_fallback_forecast(
|
|
491
473
|
data=data, known_covariates=known_covariates
|
|
@@ -497,12 +479,12 @@ class DirectTabularModel(AbstractMLForecastModel):
|
|
|
497
479
|
if known_covariates is not None:
|
|
498
480
|
data_future = known_covariates.copy()
|
|
499
481
|
else:
|
|
500
|
-
future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length)
|
|
482
|
+
future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq)
|
|
501
483
|
data_future = pd.DataFrame(columns=[self.target], index=future_index, dtype="float32")
|
|
502
484
|
# MLForecast raises exception of target contains NaN. We use inf as placeholder, replace them by NaN afterwards
|
|
503
485
|
data_future[self.target] = float("inf")
|
|
504
486
|
data_extended = pd.concat([data, data_future])
|
|
505
|
-
mlforecast_df = self._to_mlforecast_df(data_extended,
|
|
487
|
+
mlforecast_df = self._to_mlforecast_df(data_extended, data.static_features)
|
|
506
488
|
if self._max_ts_length is not None:
|
|
507
489
|
# We appended `prediction_length` time steps to each series, so increase length
|
|
508
490
|
mlforecast_df = self._shorten_all_series(mlforecast_df, self._max_ts_length + self.prediction_length)
|
|
@@ -617,7 +599,6 @@ class RecursiveTabularModel(AbstractMLForecastModel):
|
|
|
617
599
|
known_covariates: Optional[TimeSeriesDataFrame] = None,
|
|
618
600
|
**kwargs,
|
|
619
601
|
) -> TimeSeriesDataFrame:
|
|
620
|
-
data = self._add_scale_as_static_feature(data)
|
|
621
602
|
original_item_id_order = data.item_ids
|
|
622
603
|
data, known_covariates, forecast_for_short_series = self._remove_short_ts_and_generate_fallback_forecast(
|
|
623
604
|
data=data, known_covariates=known_covariates
|
|
@@ -630,7 +611,7 @@ class RecursiveTabularModel(AbstractMLForecastModel):
|
|
|
630
611
|
if self._max_ts_length is not None:
|
|
631
612
|
new_df = self._shorten_all_series(new_df, self._max_ts_length)
|
|
632
613
|
if known_covariates is None:
|
|
633
|
-
future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length)
|
|
614
|
+
future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq)
|
|
634
615
|
known_covariates = pd.DataFrame(columns=[self.target], index=future_index, dtype="float32")
|
|
635
616
|
X_df = self._to_mlforecast_df(known_covariates, data.static_features, include_target=False)
|
|
636
617
|
# If both covariates & static features are missing, set X_df = None to avoid exception from MLForecast
|
|
@@ -330,7 +330,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
330
330
|
df = pd.DataFrame(
|
|
331
331
|
np.concatenate([mean, quantiles], axis=1),
|
|
332
332
|
columns=["mean"] + [str(q) for q in self.quantile_levels],
|
|
333
|
-
index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length),
|
|
333
|
+
index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq),
|
|
334
334
|
)
|
|
335
335
|
|
|
336
336
|
return TimeSeriesDataFrame(df)
|
|
@@ -46,6 +46,7 @@ class SimpleGluonTSDataset(GluonTSDataset):
|
|
|
46
46
|
def __init__(
|
|
47
47
|
self,
|
|
48
48
|
target_df: TimeSeriesDataFrame,
|
|
49
|
+
freq: str,
|
|
49
50
|
target_column: str = "target",
|
|
50
51
|
feat_static_cat: Optional[np.ndarray] = None,
|
|
51
52
|
feat_static_real: Optional[np.ndarray] = None,
|
|
@@ -57,7 +58,6 @@ class SimpleGluonTSDataset(GluonTSDataset):
|
|
|
57
58
|
prediction_length: int = None,
|
|
58
59
|
):
|
|
59
60
|
assert target_df is not None
|
|
60
|
-
assert target_df.freq, "Initializing GluonTS data sets without freq is not allowed"
|
|
61
61
|
# Convert TimeSeriesDataFrame to pd.Series for faster processing
|
|
62
62
|
self.target_array = target_df[target_column].to_numpy(np.float32)
|
|
63
63
|
self.feat_static_cat = self._astype(feat_static_cat, dtype=np.int64)
|
|
@@ -66,7 +66,7 @@ class SimpleGluonTSDataset(GluonTSDataset):
|
|
|
66
66
|
self.feat_dynamic_real = self._astype(feat_dynamic_real, dtype=np.float32)
|
|
67
67
|
self.past_feat_dynamic_cat = self._astype(past_feat_dynamic_cat, dtype=np.int64)
|
|
68
68
|
self.past_feat_dynamic_real = self._astype(past_feat_dynamic_real, dtype=np.float32)
|
|
69
|
-
self.freq = self._to_gluonts_freq(
|
|
69
|
+
self.freq = self._to_gluonts_freq(freq)
|
|
70
70
|
|
|
71
71
|
# Necessary to compute indptr for known_covariates at prediction time
|
|
72
72
|
self.includes_future = includes_future
|
|
@@ -234,13 +234,6 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
|
|
234
234
|
|
|
235
235
|
def _deferred_init_params_aux(self, dataset: TimeSeriesDataFrame) -> None:
|
|
236
236
|
"""Update GluonTS specific parameters with information available only at training time."""
|
|
237
|
-
self.freq = dataset.freq or self.freq
|
|
238
|
-
if not self.freq:
|
|
239
|
-
raise ValueError(
|
|
240
|
-
"Dataset frequency not provided in the dataset, fit arguments or "
|
|
241
|
-
"during initialization. Please provide a `freq` string to `fit`."
|
|
242
|
-
)
|
|
243
|
-
|
|
244
237
|
model_params = self._get_model_params()
|
|
245
238
|
disable_static_features = model_params.get("disable_static_features", False)
|
|
246
239
|
if not disable_static_features:
|
|
@@ -502,6 +495,7 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
|
|
502
495
|
|
|
503
496
|
return SimpleGluonTSDataset(
|
|
504
497
|
target_df=time_series_df[[self.target]],
|
|
498
|
+
freq=self.freq,
|
|
505
499
|
target_column=self.target,
|
|
506
500
|
feat_static_cat=feat_static_cat,
|
|
507
501
|
feat_static_real=feat_static_real,
|
|
@@ -592,7 +586,7 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
|
|
|
592
586
|
predicted_targets = self._predict_gluonts_forecasts(data, known_covariates=known_covariates, **kwargs)
|
|
593
587
|
df = self._gluonts_forecasts_to_data_frame(
|
|
594
588
|
predicted_targets,
|
|
595
|
-
forecast_index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length),
|
|
589
|
+
forecast_index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq),
|
|
596
590
|
)
|
|
597
591
|
return df
|
|
598
592
|
|
|
@@ -166,7 +166,7 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
|
|
|
166
166
|
f"({fraction_failed_models:.1%}). Fallback model SeasonalNaive was used for these time series."
|
|
167
167
|
)
|
|
168
168
|
predictions_df = pd.concat([pred for pred, _ in predictions_with_flags])
|
|
169
|
-
predictions_df.index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length)
|
|
169
|
+
predictions_df.index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq)
|
|
170
170
|
return TimeSeriesDataFrame(predictions_df)
|
|
171
171
|
|
|
172
172
|
def score_and_cache_oof(
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import warnings
|
|
2
|
+
from typing import Optional
|
|
2
3
|
|
|
3
4
|
import numpy as np
|
|
4
5
|
import pandas as pd
|
|
@@ -15,7 +16,9 @@ def get_forecast_horizon_index_single_time_series(
|
|
|
15
16
|
|
|
16
17
|
|
|
17
18
|
def get_forecast_horizon_index_ts_dataframe(
|
|
18
|
-
ts_dataframe: TimeSeriesDataFrame,
|
|
19
|
+
ts_dataframe: TimeSeriesDataFrame,
|
|
20
|
+
prediction_length: int,
|
|
21
|
+
freq: Optional[str] = None,
|
|
19
22
|
) -> pd.MultiIndex:
|
|
20
23
|
"""For each item in the dataframe, get timestamps for the next prediction_length many time steps into the future.
|
|
21
24
|
|
|
@@ -26,7 +29,9 @@ def get_forecast_horizon_index_ts_dataframe(
|
|
|
26
29
|
last = ts_dataframe.reset_index()[[ITEMID, TIMESTAMP]].groupby(by=ITEMID, sort=False, as_index=False).last()
|
|
27
30
|
item_ids = np.repeat(last[ITEMID], prediction_length)
|
|
28
31
|
|
|
29
|
-
|
|
32
|
+
if freq is None:
|
|
33
|
+
freq = ts_dataframe.freq
|
|
34
|
+
offset = pd.tseries.frequencies.to_offset(freq)
|
|
30
35
|
last_ts = pd.DatetimeIndex(last[TIMESTAMP])
|
|
31
36
|
# Non-vectorized offsets like BusinessDay may produce a PerformanceWarning - we filter them
|
|
32
37
|
with warnings.catch_warnings():
|
autogluon/timeseries/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.1.
|
|
3
|
+
Version: 1.1.0b20240411
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -52,9 +52,9 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
|
|
|
52
52
|
Requires-Dist: tqdm <5,>=4.38
|
|
53
53
|
Requires-Dist: orjson ~=3.9
|
|
54
54
|
Requires-Dist: tensorboard <3,>=2.9
|
|
55
|
-
Requires-Dist: autogluon.core[raytune] ==1.1.
|
|
56
|
-
Requires-Dist: autogluon.common ==1.1.
|
|
57
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.
|
|
55
|
+
Requires-Dist: autogluon.core[raytune] ==1.1.0b20240411
|
|
56
|
+
Requires-Dist: autogluon.common ==1.1.0b20240411
|
|
57
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240411
|
|
58
58
|
Provides-Extra: all
|
|
59
59
|
Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
|
|
60
60
|
Provides-Extra: chronos-onnx
|
|
@@ -1,14 +1,14 @@
|
|
|
1
|
-
autogluon.timeseries-1.1.
|
|
1
|
+
autogluon.timeseries-1.1.0b20240411-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
|
4
|
-
autogluon/timeseries/learner.py,sha256=
|
|
4
|
+
autogluon/timeseries/learner.py,sha256=m80SjcXTqJvbjIozUlu8s8HBz1De3W9AXsTvKeKIto0,13865
|
|
5
5
|
autogluon/timeseries/predictor.py,sha256=A-YkJGKrYGXGlmtIHd9CDMmudBSKcBdnOCJK4oGsQr8,81222
|
|
6
6
|
autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
|
|
7
|
-
autogluon/timeseries/version.py,sha256=
|
|
7
|
+
autogluon/timeseries/version.py,sha256=y7BI44S8iDi76ohS8KVBBeNT-lipii0Hz837pbKHVLQ,90
|
|
8
8
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
|
9
9
|
autogluon/timeseries/configs/presets_configs.py,sha256=ZVV8BsnGnnHPgjBtJBqF-H35MYUdzRBQ8FP7zA3_11g,1949
|
|
10
10
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
11
|
-
autogluon/timeseries/dataset/ts_dataframe.py,sha256=
|
|
11
|
+
autogluon/timeseries/dataset/ts_dataframe.py,sha256=ep0_3hZfQu59fLoxvMWU6JpoE31d4SuvwSoXO_X48f8,45593
|
|
12
12
|
autogluon/timeseries/metrics/__init__.py,sha256=KzgXNj5or7RB_uadjgC8p5gxyV26zjj2hT58OmvnfmA,1875
|
|
13
13
|
autogluon/timeseries/metrics/abstract.py,sha256=9xCFQ3NaR1C0hn01M7oBd72a_CiNV-w6QFcRjwUbKYI,8183
|
|
14
14
|
autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEseJxUdneqE,13399
|
|
@@ -20,21 +20,21 @@ autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ8
|
|
|
20
20
|
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=q5yVFyFJPaMVtW48tr2Pw-hgedM5upvc-93qjN4Li68,23435
|
|
21
21
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
|
22
22
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
|
23
|
-
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=
|
|
23
|
+
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=lnHzCoMF6x9jZOzRM4zSlcXmx0XmtRlsPoiE-LWmqQ0,31299
|
|
24
24
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
|
|
25
25
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
|
26
|
-
autogluon/timeseries/models/chronos/model.py,sha256=
|
|
26
|
+
autogluon/timeseries/models/chronos/model.py,sha256=0ZxOpGyx7MmXYDr9zeDt6-rIu50Bm7ssR9zTIvd6vmQ,14659
|
|
27
27
|
autogluon/timeseries/models/chronos/pipeline.py,sha256=caR4tx-MZnrPeiU_Rra566-OP_SpodtOgcU7P0Hw0Vc,20784
|
|
28
28
|
autogluon/timeseries/models/chronos/utils.py,sha256=dl7pytUFmosFVfBcBAGA0JqMJp4cTQ3DmM9Mdjap9no,2124
|
|
29
29
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
|
|
30
30
|
autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
|
|
31
31
|
autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=5HvZuW5osgsZg3V69k82nKEOy_YgeH1JTfQa7F3cU7s,7220
|
|
32
32
|
autogluon/timeseries/models/gluonts/__init__.py,sha256=M8PV9ZE4WpteScMobXM6RH1Udb1AZiHHtj2g5GQL3TU,329
|
|
33
|
-
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=
|
|
33
|
+
autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=1MUbeFqRZbfPwAp6ClXmduxXgRV-5H0m1h23OeyPMp0,34031
|
|
34
34
|
autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
35
35
|
autogluon/timeseries/models/gluonts/torch/models.py,sha256=PVDns7CnZtJTbPiCw-FJxahKrDjC-wj0VkwIGsodYY0,19930
|
|
36
36
|
autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0LPPOwtXwmb1ErohQ,756
|
|
37
|
-
autogluon/timeseries/models/local/abstract_local_model.py,sha256=
|
|
37
|
+
autogluon/timeseries/models/local/abstract_local_model.py,sha256=5wvwt7d99kw-PTDnuT45uoCeXk6POjUArCAwUj8mSok,11836
|
|
38
38
|
autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
|
|
39
39
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
|
40
40
|
autogluon/timeseries/models/local/statsforecast.py,sha256=oDYKKM2LZXEQLhPLEgZZWhvSEC1iE1wBexpl8P-Cxwc,32991
|
|
@@ -45,18 +45,18 @@ autogluon/timeseries/trainer/abstract_trainer.py,sha256=2nPLskmbOGRzkj6ttX0tHVkj
|
|
|
45
45
|
autogluon/timeseries/trainer/auto_trainer.py,sha256=psJFZBwWWPlLjNwAgvO4OUJXsRW1sTN2YS9a4pdoeoE,3344
|
|
46
46
|
autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
47
47
|
autogluon/timeseries/utils/features.py,sha256=OvBxLIWKR7fPOIlifonVKXUdaWazH_WbdLssJtFCpGs,19261
|
|
48
|
-
autogluon/timeseries/utils/forecast.py,sha256=
|
|
48
|
+
autogluon/timeseries/utils/forecast.py,sha256=p0WKM9Q0nLAwwmCgYZI1zi9mCOWXWJfllEt2lPRQl4M,1882
|
|
49
49
|
autogluon/timeseries/utils/warning_filters.py,sha256=ngjmfv21zIwTG-7VNZT-NkaSR7ssnoNtUwcXCXANZ4A,2076
|
|
50
50
|
autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
|
|
51
51
|
autogluon/timeseries/utils/datetime/base.py,sha256=MsqIHY14m3QMjSwwtE7Uo1oNwepWUby_nxlWm4DlqKU,848
|
|
52
52
|
autogluon/timeseries/utils/datetime/lags.py,sha256=kcU4liKbHj7KP2ajNU-KLZ8OYSU35EgT4kJjZNSw0Zg,5875
|
|
53
53
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=kgK_ukw2wCviEB7CZXRVC5HZpBJZu9IsRrvCJ9E_rOE,755
|
|
54
54
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=pROkYyxETQ8rHKfPGhf2paB73C7rWJ2Ui0cCswLqbBg,2562
|
|
55
|
-
autogluon.timeseries-1.1.
|
|
56
|
-
autogluon.timeseries-1.1.
|
|
57
|
-
autogluon.timeseries-1.1.
|
|
58
|
-
autogluon.timeseries-1.1.
|
|
59
|
-
autogluon.timeseries-1.1.
|
|
60
|
-
autogluon.timeseries-1.1.
|
|
61
|
-
autogluon.timeseries-1.1.
|
|
62
|
-
autogluon.timeseries-1.1.
|
|
55
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
56
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/METADATA,sha256=BHzU1LhBz9T7B4z230k-Fy7c7MkjQ9UEcgcUezVbTCI,12528
|
|
57
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
58
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
59
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
60
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
61
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
62
|
+
autogluon.timeseries-1.1.0b20240411.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|