autogluon.timeseries 1.1.0b20240409__py3-none-any.whl → 1.1.0b20240411__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -759,12 +759,6 @@ class TimeSeriesDataFrame(pd.DataFrame, TimeSeriesDataFrameDeprecatedMixin):
759
759
  2019-02-07 4.0
760
760
 
761
761
  """
762
- if self.freq is None:
763
- raise ValueError(
764
- "Please make sure that all time series have a regular index before calling `fill_missing_values`"
765
- "(for example, using the `convert_frequency` method)."
766
- )
767
-
768
762
  # Convert to pd.DataFrame for faster processing
769
763
  df = pd.DataFrame(self)
770
764
 
@@ -772,6 +766,12 @@ class TimeSeriesDataFrame(pd.DataFrame, TimeSeriesDataFrameDeprecatedMixin):
772
766
  if not df.isna().any(axis=None):
773
767
  return self
774
768
 
769
+ if not self.index.is_monotonic_increasing:
770
+ logger.warning(
771
+ "Trying to fill missing values in an unsorted dataframe. "
772
+ "It is highly recommended to call `ts_df.sort_index()` before calling `ts_df.fill_missing_values()`"
773
+ )
774
+
775
775
  grouped_df = df.groupby(level=ITEMID, sort=False, group_keys=False)
776
776
  if method == "auto":
777
777
  filled_df = grouped_df.ffill()
@@ -43,6 +43,7 @@ class TimeSeriesLearner(AbstractLearner):
43
43
  self.prediction_length = prediction_length
44
44
  self.quantile_levels = kwargs.get("quantile_levels", [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
45
45
  self.cache_predictions = cache_predictions
46
+ self.freq: Optional[str] = None
46
47
 
47
48
  self.feature_generator = TimeSeriesFeatureGenerator(
48
49
  target=self.target, known_covariates_names=self.known_covariates_names
@@ -87,6 +88,8 @@ class TimeSeriesLearner(AbstractLearner):
87
88
  if val_data is not None:
88
89
  val_data = self.feature_generator.transform(val_data, data_frame_name="tuning_data")
89
90
 
91
+ self.freq = train_data.freq
92
+
90
93
  trainer_init_kwargs = kwargs.copy()
91
94
  trainer_init_kwargs.update(
92
95
  dict(
@@ -155,7 +158,9 @@ class TimeSeriesLearner(AbstractLearner):
155
158
  f"known_covariates are missing information for the following item_ids: {reprlib.repr(missing_item_ids.to_list())}."
156
159
  )
157
160
 
158
- forecast_index = get_forecast_horizon_index_ts_dataframe(data, prediction_length=self.prediction_length)
161
+ forecast_index = get_forecast_horizon_index_ts_dataframe(
162
+ data, prediction_length=self.prediction_length, freq=self.freq
163
+ )
159
164
  try:
160
165
  known_covariates = known_covariates.loc[forecast_index]
161
166
  except KeyError:
@@ -252,6 +252,11 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
252
252
  if static_features is not None:
253
253
  df = pd.merge(df, static_features, how="left", on=ITEMID, suffixes=(None, "_static_feat"))
254
254
 
255
+ for col in self.metadata.known_covariates_real:
256
+ # Normalize non-boolean features using mean_abs scaling
257
+ if not df[col].isin([0, 1]).all():
258
+ df[f"__scaled_{col}"] = df[col] / df[col].abs().groupby(df[ITEMID]).mean().reindex(df[ITEMID]).values
259
+
255
260
  # We assume that df is sorted by 'unique_id' inside `TimeSeriesPredictor._check_and_prepare_data_frame`
256
261
  return df.rename(columns=column_name_mapping)
257
262
 
@@ -474,7 +479,7 @@ class DirectTabularModel(AbstractMLForecastModel):
474
479
  if known_covariates is not None:
475
480
  data_future = known_covariates.copy()
476
481
  else:
477
- future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length)
482
+ future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq)
478
483
  data_future = pd.DataFrame(columns=[self.target], index=future_index, dtype="float32")
479
484
  # MLForecast raises exception of target contains NaN. We use inf as placeholder, replace them by NaN afterwards
480
485
  data_future[self.target] = float("inf")
@@ -606,7 +611,7 @@ class RecursiveTabularModel(AbstractMLForecastModel):
606
611
  if self._max_ts_length is not None:
607
612
  new_df = self._shorten_all_series(new_df, self._max_ts_length)
608
613
  if known_covariates is None:
609
- future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length)
614
+ future_index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq)
610
615
  known_covariates = pd.DataFrame(columns=[self.target], index=future_index, dtype="float32")
611
616
  X_df = self._to_mlforecast_df(known_covariates, data.static_features, include_target=False)
612
617
  # If both covariates & static features are missing, set X_df = None to avoid exception from MLForecast
@@ -330,7 +330,7 @@ class ChronosModel(AbstractTimeSeriesModel):
330
330
  df = pd.DataFrame(
331
331
  np.concatenate([mean, quantiles], axis=1),
332
332
  columns=["mean"] + [str(q) for q in self.quantile_levels],
333
- index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length),
333
+ index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq),
334
334
  )
335
335
 
336
336
  return TimeSeriesDataFrame(df)
@@ -46,6 +46,7 @@ class SimpleGluonTSDataset(GluonTSDataset):
46
46
  def __init__(
47
47
  self,
48
48
  target_df: TimeSeriesDataFrame,
49
+ freq: str,
49
50
  target_column: str = "target",
50
51
  feat_static_cat: Optional[np.ndarray] = None,
51
52
  feat_static_real: Optional[np.ndarray] = None,
@@ -57,7 +58,6 @@ class SimpleGluonTSDataset(GluonTSDataset):
57
58
  prediction_length: int = None,
58
59
  ):
59
60
  assert target_df is not None
60
- assert target_df.freq, "Initializing GluonTS data sets without freq is not allowed"
61
61
  # Convert TimeSeriesDataFrame to pd.Series for faster processing
62
62
  self.target_array = target_df[target_column].to_numpy(np.float32)
63
63
  self.feat_static_cat = self._astype(feat_static_cat, dtype=np.int64)
@@ -66,7 +66,7 @@ class SimpleGluonTSDataset(GluonTSDataset):
66
66
  self.feat_dynamic_real = self._astype(feat_dynamic_real, dtype=np.float32)
67
67
  self.past_feat_dynamic_cat = self._astype(past_feat_dynamic_cat, dtype=np.int64)
68
68
  self.past_feat_dynamic_real = self._astype(past_feat_dynamic_real, dtype=np.float32)
69
- self.freq = self._to_gluonts_freq(target_df.freq)
69
+ self.freq = self._to_gluonts_freq(freq)
70
70
 
71
71
  # Necessary to compute indptr for known_covariates at prediction time
72
72
  self.includes_future = includes_future
@@ -234,13 +234,6 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
234
234
 
235
235
  def _deferred_init_params_aux(self, dataset: TimeSeriesDataFrame) -> None:
236
236
  """Update GluonTS specific parameters with information available only at training time."""
237
- self.freq = dataset.freq or self.freq
238
- if not self.freq:
239
- raise ValueError(
240
- "Dataset frequency not provided in the dataset, fit arguments or "
241
- "during initialization. Please provide a `freq` string to `fit`."
242
- )
243
-
244
237
  model_params = self._get_model_params()
245
238
  disable_static_features = model_params.get("disable_static_features", False)
246
239
  if not disable_static_features:
@@ -502,6 +495,7 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
502
495
 
503
496
  return SimpleGluonTSDataset(
504
497
  target_df=time_series_df[[self.target]],
498
+ freq=self.freq,
505
499
  target_column=self.target,
506
500
  feat_static_cat=feat_static_cat,
507
501
  feat_static_real=feat_static_real,
@@ -592,7 +586,7 @@ class AbstractGluonTSModel(AbstractTimeSeriesModel):
592
586
  predicted_targets = self._predict_gluonts_forecasts(data, known_covariates=known_covariates, **kwargs)
593
587
  df = self._gluonts_forecasts_to_data_frame(
594
588
  predicted_targets,
595
- forecast_index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length),
589
+ forecast_index=get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq),
596
590
  )
597
591
  return df
598
592
 
@@ -166,7 +166,7 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
166
166
  f"({fraction_failed_models:.1%}). Fallback model SeasonalNaive was used for these time series."
167
167
  )
168
168
  predictions_df = pd.concat([pred for pred, _ in predictions_with_flags])
169
- predictions_df.index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length)
169
+ predictions_df.index = get_forecast_horizon_index_ts_dataframe(data, self.prediction_length, freq=self.freq)
170
170
  return TimeSeriesDataFrame(predictions_df)
171
171
 
172
172
  def score_and_cache_oof(
@@ -185,9 +185,9 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
185
185
  if end_time is not None and time.time() >= end_time:
186
186
  raise TimeLimitExceeded
187
187
 
188
+ model_failed = False
188
189
  if time_series.isna().all():
189
190
  result = self._dummy_forecast.copy()
190
- model_failed = True
191
191
  else:
192
192
  try:
193
193
  result = self._predict_with_local_model(
@@ -196,7 +196,6 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
196
196
  )
197
197
  if not np.isfinite(result.values).all():
198
198
  raise RuntimeError("Forecast contains NaN or Inf values.")
199
- model_failed = False
200
199
  except Exception:
201
200
  if self.use_fallback_model:
202
201
  result = seasonal_naive_forecast(
@@ -1,4 +1,5 @@
1
1
  import warnings
2
+ from typing import Optional
2
3
 
3
4
  import numpy as np
4
5
  import pandas as pd
@@ -15,7 +16,9 @@ def get_forecast_horizon_index_single_time_series(
15
16
 
16
17
 
17
18
  def get_forecast_horizon_index_ts_dataframe(
18
- ts_dataframe: TimeSeriesDataFrame, prediction_length: int
19
+ ts_dataframe: TimeSeriesDataFrame,
20
+ prediction_length: int,
21
+ freq: Optional[str] = None,
19
22
  ) -> pd.MultiIndex:
20
23
  """For each item in the dataframe, get timestamps for the next prediction_length many time steps into the future.
21
24
 
@@ -26,7 +29,9 @@ def get_forecast_horizon_index_ts_dataframe(
26
29
  last = ts_dataframe.reset_index()[[ITEMID, TIMESTAMP]].groupby(by=ITEMID, sort=False, as_index=False).last()
27
30
  item_ids = np.repeat(last[ITEMID], prediction_length)
28
31
 
29
- offset = pd.tseries.frequencies.to_offset(ts_dataframe.freq)
32
+ if freq is None:
33
+ freq = ts_dataframe.freq
34
+ offset = pd.tseries.frequencies.to_offset(freq)
30
35
  last_ts = pd.DatetimeIndex(last[TIMESTAMP])
31
36
  # Non-vectorized offsets like BusinessDay may produce a PerformanceWarning - we filter them
32
37
  with warnings.catch_warnings():
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.0b20240409'
2
+ __version__ = '1.1.0b20240411'
3
3
  __lite__ = False
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.0b20240409
4
- Summary: AutoML for Image, Text, and Tabular Data
3
+ Version: 1.1.0b20240411
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
7
7
  License: Apache-2.0
@@ -52,9 +52,9 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
52
52
  Requires-Dist: tqdm <5,>=4.38
53
53
  Requires-Dist: orjson ~=3.9
54
54
  Requires-Dist: tensorboard <3,>=2.9
55
- Requires-Dist: autogluon.core[raytune] ==1.1.0b20240409
56
- Requires-Dist: autogluon.common ==1.1.0b20240409
57
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240409
55
+ Requires-Dist: autogluon.core[raytune] ==1.1.0b20240411
56
+ Requires-Dist: autogluon.common ==1.1.0b20240411
57
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240411
58
58
  Provides-Extra: all
59
59
  Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
60
60
  Provides-Extra: chronos-onnx
@@ -75,7 +75,7 @@ Requires-Dist: black ~=23.0 ; extra == 'tests'
75
75
  <div align="center">
76
76
  <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
77
77
 
78
- ## AutoML for Image, Text, Time Series, and Tabular Data
78
+ ## Fast and Accurate ML in 3 Lines of Code
79
79
 
80
80
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
81
81
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
@@ -1,14 +1,14 @@
1
- autogluon.timeseries-1.1.0b20240409-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.1.0b20240411-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
- autogluon/timeseries/learner.py,sha256=fPIV2p0BMWcZr5fwOkNsJrk8RxK-IYUH_VON3_YXKOQ,13750
4
+ autogluon/timeseries/learner.py,sha256=m80SjcXTqJvbjIozUlu8s8HBz1De3W9AXsTvKeKIto0,13865
5
5
  autogluon/timeseries/predictor.py,sha256=A-YkJGKrYGXGlmtIHd9CDMmudBSKcBdnOCJK4oGsQr8,81222
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=ACrO9T3KI3r4-b2HTTFpVrIdjO5Xc59N9PjfRI0dV7Y,90
7
+ autogluon/timeseries/version.py,sha256=y7BI44S8iDi76ohS8KVBBeNT-lipii0Hz837pbKHVLQ,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=ZVV8BsnGnnHPgjBtJBqF-H35MYUdzRBQ8FP7zA3_11g,1949
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
11
- autogluon/timeseries/dataset/ts_dataframe.py,sha256=Laa7g_4ssScjNlCCBJgW6R6NLLt3cu8rVElL6FtvlrE,45567
11
+ autogluon/timeseries/dataset/ts_dataframe.py,sha256=ep0_3hZfQu59fLoxvMWU6JpoE31d4SuvwSoXO_X48f8,45593
12
12
  autogluon/timeseries/metrics/__init__.py,sha256=KzgXNj5or7RB_uadjgC8p5gxyV26zjj2hT58OmvnfmA,1875
13
13
  autogluon/timeseries/metrics/abstract.py,sha256=9xCFQ3NaR1C0hn01M7oBd72a_CiNV-w6QFcRjwUbKYI,8183
14
14
  autogluon/timeseries/metrics/point.py,sha256=xy8sKrBbuxZ7yTW21TDPayKnEj2FBj1AEseJxUdneqE,13399
@@ -20,21 +20,21 @@ autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ8
20
20
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=q5yVFyFJPaMVtW48tr2Pw-hgedM5upvc-93qjN4Li68,23435
21
21
  autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
22
22
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
23
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=9gNuCWf8vVfVPiXppwG5l_3mLbZZ6i5pHKTM-rSk5Ww,30977
23
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=lnHzCoMF6x9jZOzRM4zSlcXmx0XmtRlsPoiE-LWmqQ0,31299
24
24
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
25
25
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
26
- autogluon/timeseries/models/chronos/model.py,sha256=wG4tlTwpFiADu-KQ3TYg-hz7hGz1vPBU__DzyQrikdI,14643
26
+ autogluon/timeseries/models/chronos/model.py,sha256=0ZxOpGyx7MmXYDr9zeDt6-rIu50Bm7ssR9zTIvd6vmQ,14659
27
27
  autogluon/timeseries/models/chronos/pipeline.py,sha256=caR4tx-MZnrPeiU_Rra566-OP_SpodtOgcU7P0Hw0Vc,20784
28
28
  autogluon/timeseries/models/chronos/utils.py,sha256=dl7pytUFmosFVfBcBAGA0JqMJp4cTQ3DmM9Mdjap9no,2124
29
29
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
30
30
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
31
31
  autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=5HvZuW5osgsZg3V69k82nKEOy_YgeH1JTfQa7F3cU7s,7220
32
32
  autogluon/timeseries/models/gluonts/__init__.py,sha256=M8PV9ZE4WpteScMobXM6RH1Udb1AZiHHtj2g5GQL3TU,329
33
- autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=X1l_MexAoyBNMGiJrWreHQHLDSmZV_OSrhjhJ7MA0JM,34348
33
+ autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=1MUbeFqRZbfPwAp6ClXmduxXgRV-5H0m1h23OeyPMp0,34031
34
34
  autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  autogluon/timeseries/models/gluonts/torch/models.py,sha256=PVDns7CnZtJTbPiCw-FJxahKrDjC-wj0VkwIGsodYY0,19930
36
36
  autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0LPPOwtXwmb1ErohQ,756
37
- autogluon/timeseries/models/local/abstract_local_model.py,sha256=pbuS8G1xUisOSMaKrsfxRdmTsZTBvFjldSTn6inyr_Q,11860
37
+ autogluon/timeseries/models/local/abstract_local_model.py,sha256=5wvwt7d99kw-PTDnuT45uoCeXk6POjUArCAwUj8mSok,11836
38
38
  autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
39
39
  autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
40
40
  autogluon/timeseries/models/local/statsforecast.py,sha256=oDYKKM2LZXEQLhPLEgZZWhvSEC1iE1wBexpl8P-Cxwc,32991
@@ -45,18 +45,18 @@ autogluon/timeseries/trainer/abstract_trainer.py,sha256=2nPLskmbOGRzkj6ttX0tHVkj
45
45
  autogluon/timeseries/trainer/auto_trainer.py,sha256=psJFZBwWWPlLjNwAgvO4OUJXsRW1sTN2YS9a4pdoeoE,3344
46
46
  autogluon/timeseries/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
47
  autogluon/timeseries/utils/features.py,sha256=OvBxLIWKR7fPOIlifonVKXUdaWazH_WbdLssJtFCpGs,19261
48
- autogluon/timeseries/utils/forecast.py,sha256=Thjt6yTPSe3V4s5cQ9UbW3ysTJb1lkqxtZiCqgBSt3w,1776
48
+ autogluon/timeseries/utils/forecast.py,sha256=p0WKM9Q0nLAwwmCgYZI1zi9mCOWXWJfllEt2lPRQl4M,1882
49
49
  autogluon/timeseries/utils/warning_filters.py,sha256=ngjmfv21zIwTG-7VNZT-NkaSR7ssnoNtUwcXCXANZ4A,2076
50
50
  autogluon/timeseries/utils/datetime/__init__.py,sha256=bTMR8jLh1LW55vHjbOr1zvWRMF_PqbvxpS-cUcNIDWI,173
51
51
  autogluon/timeseries/utils/datetime/base.py,sha256=MsqIHY14m3QMjSwwtE7Uo1oNwepWUby_nxlWm4DlqKU,848
52
52
  autogluon/timeseries/utils/datetime/lags.py,sha256=kcU4liKbHj7KP2ajNU-KLZ8OYSU35EgT4kJjZNSw0Zg,5875
53
53
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=kgK_ukw2wCviEB7CZXRVC5HZpBJZu9IsRrvCJ9E_rOE,755
54
54
  autogluon/timeseries/utils/datetime/time_features.py,sha256=pROkYyxETQ8rHKfPGhf2paB73C7rWJ2Ui0cCswLqbBg,2562
55
- autogluon.timeseries-1.1.0b20240409.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
- autogluon.timeseries-1.1.0b20240409.dist-info/METADATA,sha256=9so2n3jb0bCI51fpMa01ZCBlBKYr1TTBof2SEaS7XN8,12543
57
- autogluon.timeseries-1.1.0b20240409.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
- autogluon.timeseries-1.1.0b20240409.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
- autogluon.timeseries-1.1.0b20240409.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
- autogluon.timeseries-1.1.0b20240409.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
- autogluon.timeseries-1.1.0b20240409.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
- autogluon.timeseries-1.1.0b20240409.dist-info/RECORD,,
55
+ autogluon.timeseries-1.1.0b20240411.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
56
+ autogluon.timeseries-1.1.0b20240411.dist-info/METADATA,sha256=BHzU1LhBz9T7B4z230k-Fy7c7MkjQ9UEcgcUezVbTCI,12528
57
+ autogluon.timeseries-1.1.0b20240411.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
58
+ autogluon.timeseries-1.1.0b20240411.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
59
+ autogluon.timeseries-1.1.0b20240411.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
+ autogluon.timeseries-1.1.0b20240411.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
61
+ autogluon.timeseries-1.1.0b20240411.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
+ autogluon.timeseries-1.1.0b20240411.dist-info/RECORD,,