autogluon.timeseries 1.0.1b20240407__py3-none-any.whl → 1.1.0b20240409__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.timeseries might be problematic. Click here for more details.
- autogluon/timeseries/models/abstract/abstract_timeseries_model.py +2 -1
- autogluon/timeseries/models/chronos/model.py +26 -43
- autogluon/timeseries/models/chronos/utils.py +66 -0
- autogluon/timeseries/models/local/abstract_local_model.py +12 -6
- autogluon/timeseries/models/multi_window/multi_window_model.py +1 -0
- autogluon/timeseries/version.py +1 -1
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/METADATA +8 -8
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/RECORD +15 -14
- /autogluon.timeseries-1.0.1b20240407-py3.8-nspkg.pth → /autogluon.timeseries-1.1.0b20240409-py3.8-nspkg.pth +0 -0
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/LICENSE +0 -0
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/NOTICE +0 -0
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/WHEEL +0 -0
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/namespace_packages.txt +0 -0
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/top_level.txt +0 -0
- {autogluon.timeseries-1.0.1b20240407.dist-info → autogluon.timeseries-1.1.0b20240409.dist-info}/zip-safe +0 -0
|
@@ -373,13 +373,14 @@ class AbstractTimeSeriesModel(AbstractModel):
|
|
|
373
373
|
val_data: TimeSeriesDataFrame,
|
|
374
374
|
store_val_score: bool = False,
|
|
375
375
|
store_predict_time: bool = False,
|
|
376
|
+
**predict_kwargs,
|
|
376
377
|
) -> None:
|
|
377
378
|
"""Compute val_score, predict_time and cache out-of-fold (OOF) predictions."""
|
|
378
379
|
past_data, known_covariates = val_data.get_model_inputs_for_scoring(
|
|
379
380
|
prediction_length=self.prediction_length, known_covariates_names=self.metadata.known_covariates
|
|
380
381
|
)
|
|
381
382
|
predict_start_time = time.time()
|
|
382
|
-
oof_predictions = self.predict(past_data, known_covariates=known_covariates)
|
|
383
|
+
oof_predictions = self.predict(past_data, known_covariates=known_covariates, **predict_kwargs)
|
|
383
384
|
self._oof_predictions = [oof_predictions]
|
|
384
385
|
if store_predict_time:
|
|
385
386
|
self.predict_time = time.time() - predict_start_time
|
|
@@ -53,42 +53,6 @@ MODEL_ALIASES = {
|
|
|
53
53
|
}
|
|
54
54
|
|
|
55
55
|
|
|
56
|
-
class ChronosInferenceDataset:
|
|
57
|
-
"""A container for time series datasets that implements the ``torch.utils.data.Dataset`` interface"""
|
|
58
|
-
|
|
59
|
-
def __init__(
|
|
60
|
-
self,
|
|
61
|
-
target_df: TimeSeriesDataFrame,
|
|
62
|
-
context_length: int,
|
|
63
|
-
target_column: str = "target",
|
|
64
|
-
):
|
|
65
|
-
assert context_length > 0
|
|
66
|
-
self.context_length = context_length
|
|
67
|
-
self.target_array = target_df[target_column].to_numpy(dtype=np.float32)
|
|
68
|
-
self.freq = target_df.freq
|
|
69
|
-
|
|
70
|
-
# store pointer to start:end of each time series
|
|
71
|
-
cum_sizes = target_df.num_timesteps_per_item().values.cumsum()
|
|
72
|
-
self.indptr = np.append(0, cum_sizes).astype(np.int32)
|
|
73
|
-
|
|
74
|
-
def __len__(self):
|
|
75
|
-
return len(self.indptr) - 1 # noqa
|
|
76
|
-
|
|
77
|
-
def _get_context(self, a: np.ndarray, pad_value=np.nan):
|
|
78
|
-
a = a[-self.context_length :]
|
|
79
|
-
pad_size = self.context_length - len(a)
|
|
80
|
-
if pad_size > 0:
|
|
81
|
-
pad = np.full(shape=(pad_size,), fill_value=pad_value)
|
|
82
|
-
a = np.concatenate((pad, a))
|
|
83
|
-
return a
|
|
84
|
-
|
|
85
|
-
def __getitem__(self, idx) -> np.ndarray:
|
|
86
|
-
start_idx = self.indptr[idx]
|
|
87
|
-
end_idx = self.indptr[idx + 1]
|
|
88
|
-
|
|
89
|
-
return self._get_context(self.target_array[start_idx:end_idx])
|
|
90
|
-
|
|
91
|
-
|
|
92
56
|
class ChronosModel(AbstractTimeSeriesModel):
|
|
93
57
|
"""Chronos pretrained time series forecasting models, based on the original
|
|
94
58
|
`ChronosModel <https://github.com/amazon-science/chronos-forecasting>`_ implementation.
|
|
@@ -196,6 +160,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
196
160
|
)
|
|
197
161
|
|
|
198
162
|
self.model_pipeline: Optional[Any] = None # of type OptimizedChronosPipeline
|
|
163
|
+
self.time_limit: Optional[float] = None
|
|
199
164
|
|
|
200
165
|
def save(self, path: str = None, verbose: bool = True) -> str:
|
|
201
166
|
pipeline = self.model_pipeline
|
|
@@ -288,14 +253,16 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
288
253
|
**kwargs,
|
|
289
254
|
) -> None:
|
|
290
255
|
self._check_fit_params()
|
|
256
|
+
self.time_limit = time_limit
|
|
291
257
|
|
|
292
258
|
def _get_inference_data_loader(
|
|
293
259
|
self,
|
|
294
260
|
data: TimeSeriesDataFrame,
|
|
295
261
|
context_length: int,
|
|
296
262
|
num_workers: int = 0,
|
|
263
|
+
time_limit: Optional[float] = None,
|
|
297
264
|
):
|
|
298
|
-
import
|
|
265
|
+
from .utils import ChronosInferenceDataLoader, ChronosInferenceDataset, timeout_callback
|
|
299
266
|
|
|
300
267
|
chronos_dataset = ChronosInferenceDataset(
|
|
301
268
|
target_df=data,
|
|
@@ -303,11 +270,12 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
303
270
|
context_length=context_length,
|
|
304
271
|
)
|
|
305
272
|
|
|
306
|
-
return
|
|
273
|
+
return ChronosInferenceDataLoader(
|
|
307
274
|
chronos_dataset,
|
|
308
275
|
batch_size=self.batch_size,
|
|
309
276
|
shuffle=False,
|
|
310
277
|
num_workers=num_workers,
|
|
278
|
+
on_batch=timeout_callback(seconds=time_limit),
|
|
311
279
|
)
|
|
312
280
|
|
|
313
281
|
def _predict(
|
|
@@ -333,6 +301,12 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
333
301
|
# load model pipeline to device memory
|
|
334
302
|
self.load_model_pipeline(context_length=context_length)
|
|
335
303
|
|
|
304
|
+
inference_data_loader = self._get_inference_data_loader(
|
|
305
|
+
data=data,
|
|
306
|
+
num_workers=self.data_loader_num_workers,
|
|
307
|
+
context_length=context_length,
|
|
308
|
+
time_limit=kwargs.get("time_limit"),
|
|
309
|
+
)
|
|
336
310
|
self.model_pipeline.model.eval()
|
|
337
311
|
with torch.inference_mode():
|
|
338
312
|
prediction_samples = [
|
|
@@ -345,11 +319,7 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
345
319
|
.detach()
|
|
346
320
|
.cpu()
|
|
347
321
|
.numpy()
|
|
348
|
-
for batch in
|
|
349
|
-
data=data,
|
|
350
|
-
num_workers=self.data_loader_num_workers,
|
|
351
|
-
context_length=context_length,
|
|
352
|
-
)
|
|
322
|
+
for batch in inference_data_loader
|
|
353
323
|
]
|
|
354
324
|
|
|
355
325
|
samples = np.concatenate(prediction_samples, axis=0).swapaxes(1, 2).reshape(-1, self.num_samples)
|
|
@@ -367,3 +337,16 @@ class ChronosModel(AbstractTimeSeriesModel):
|
|
|
367
337
|
|
|
368
338
|
def _more_tags(self) -> Dict:
|
|
369
339
|
return {"allow_nan": True}
|
|
340
|
+
|
|
341
|
+
def score_and_cache_oof(
|
|
342
|
+
self,
|
|
343
|
+
val_data: TimeSeriesDataFrame,
|
|
344
|
+
store_val_score: bool = False,
|
|
345
|
+
store_predict_time: bool = False,
|
|
346
|
+
**predict_kwargs,
|
|
347
|
+
) -> None:
|
|
348
|
+
# All computation happens during inference, so we provide the time_limit at prediction time
|
|
349
|
+
# TODO: Once custom predict_kwargs is allowed, make sure that `time_limit` is not among the keys
|
|
350
|
+
super().score_and_cache_oof(
|
|
351
|
+
val_data, store_val_score, store_predict_time, time_limit=self.time_limit, **predict_kwargs
|
|
352
|
+
)
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
import time
|
|
2
|
+
from typing import Callable, Optional
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from autogluon.core.utils.exceptions import TimeLimitExceeded
|
|
8
|
+
from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class ChronosInferenceDataset:
|
|
12
|
+
"""A container for time series datasets that implements the ``torch.utils.data.Dataset`` interface"""
|
|
13
|
+
|
|
14
|
+
def __init__(
|
|
15
|
+
self,
|
|
16
|
+
target_df: TimeSeriesDataFrame,
|
|
17
|
+
context_length: int,
|
|
18
|
+
target_column: str = "target",
|
|
19
|
+
):
|
|
20
|
+
assert context_length > 0
|
|
21
|
+
self.context_length = context_length
|
|
22
|
+
self.target_array = target_df[target_column].to_numpy(dtype=np.float32)
|
|
23
|
+
self.freq = target_df.freq
|
|
24
|
+
|
|
25
|
+
# store pointer to start:end of each time series
|
|
26
|
+
cum_sizes = target_df.num_timesteps_per_item().values.cumsum()
|
|
27
|
+
self.indptr = np.append(0, cum_sizes).astype(np.int32)
|
|
28
|
+
|
|
29
|
+
def __len__(self):
|
|
30
|
+
return len(self.indptr) - 1 # noqa
|
|
31
|
+
|
|
32
|
+
def _get_context(self, a: np.ndarray, pad_value=np.nan):
|
|
33
|
+
a = a[-self.context_length :]
|
|
34
|
+
pad_size = self.context_length - len(a)
|
|
35
|
+
if pad_size > 0:
|
|
36
|
+
pad = np.full(shape=(pad_size,), fill_value=pad_value)
|
|
37
|
+
a = np.concatenate((pad, a))
|
|
38
|
+
return a
|
|
39
|
+
|
|
40
|
+
def __getitem__(self, idx) -> np.ndarray:
|
|
41
|
+
start_idx = self.indptr[idx]
|
|
42
|
+
end_idx = self.indptr[idx + 1]
|
|
43
|
+
|
|
44
|
+
return self._get_context(self.target_array[start_idx:end_idx])
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class ChronosInferenceDataLoader(torch.utils.data.DataLoader):
|
|
48
|
+
def __init__(self, *args, **kwargs):
|
|
49
|
+
self.callback: Callable = kwargs.pop("on_batch", lambda: None)
|
|
50
|
+
super().__init__(*args, **kwargs)
|
|
51
|
+
|
|
52
|
+
def __iter__(self):
|
|
53
|
+
for item in super().__iter__():
|
|
54
|
+
yield item
|
|
55
|
+
self.callback()
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def timeout_callback(seconds: Optional[float]) -> Callable:
|
|
59
|
+
"""Return a callback object that raises an exception if time limit is exceeded."""
|
|
60
|
+
start_time = time.time()
|
|
61
|
+
|
|
62
|
+
def callback() -> None:
|
|
63
|
+
if seconds is not None and time.time() - start_time > seconds:
|
|
64
|
+
raise TimeLimitExceeded
|
|
65
|
+
|
|
66
|
+
return callback
|
|
@@ -144,9 +144,10 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
|
|
|
144
144
|
|
|
145
145
|
# timeout ensures that no individual job takes longer than time_limit
|
|
146
146
|
# TODO: a job started late may still exceed time_limit - how to prevent that?
|
|
147
|
-
|
|
147
|
+
time_limit = kwargs.get("time_limit")
|
|
148
|
+
timeout = None if self.n_jobs == 1 else time_limit
|
|
148
149
|
# end_time ensures that no new jobs are started after time_limit is exceeded
|
|
149
|
-
end_time = None if
|
|
150
|
+
end_time = None if time_limit is None else time.time() + time_limit
|
|
150
151
|
executor = Parallel(self.n_jobs, timeout=timeout)
|
|
151
152
|
|
|
152
153
|
try:
|
|
@@ -169,11 +170,16 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
|
|
|
169
170
|
return TimeSeriesDataFrame(predictions_df)
|
|
170
171
|
|
|
171
172
|
def score_and_cache_oof(
|
|
172
|
-
self,
|
|
173
|
+
self,
|
|
174
|
+
val_data: TimeSeriesDataFrame,
|
|
175
|
+
store_val_score: bool = False,
|
|
176
|
+
store_predict_time: bool = False,
|
|
177
|
+
**predict_kwargs,
|
|
173
178
|
) -> None:
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
179
|
+
# All computation happens during inference, so we provide the time_limit at prediction time
|
|
180
|
+
super().score_and_cache_oof(
|
|
181
|
+
val_data, store_val_score, store_predict_time, time_limit=self.time_limit, **predict_kwargs
|
|
182
|
+
)
|
|
177
183
|
|
|
178
184
|
def _predict_wrapper(self, time_series: pd.Series, end_time: Optional[float] = None) -> Tuple[pd.DataFrame, bool]:
|
|
179
185
|
if end_time is not None and time.time() >= end_time:
|
|
@@ -189,6 +189,7 @@ class MultiWindowBacktestingModel(AbstractTimeSeriesModel):
|
|
|
189
189
|
val_data: TimeSeriesDataFrame,
|
|
190
190
|
store_val_score: bool = False,
|
|
191
191
|
store_predict_time: bool = False,
|
|
192
|
+
**predict_kwargs,
|
|
192
193
|
) -> None:
|
|
193
194
|
# self.val_score, self.predict_time, self._oof_predictions already saved during _fit()
|
|
194
195
|
assert self._oof_predictions is not None
|
autogluon/timeseries/version.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.timeseries
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.1.0b20240409
|
|
4
4
|
Summary: AutoML for Image, Text, and Tabular Data
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -52,16 +52,16 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
|
|
|
52
52
|
Requires-Dist: tqdm <5,>=4.38
|
|
53
53
|
Requires-Dist: orjson ~=3.9
|
|
54
54
|
Requires-Dist: tensorboard <3,>=2.9
|
|
55
|
-
Requires-Dist: autogluon.core[raytune] ==1.
|
|
56
|
-
Requires-Dist: autogluon.common ==1.
|
|
57
|
-
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.
|
|
55
|
+
Requires-Dist: autogluon.core[raytune] ==1.1.0b20240409
|
|
56
|
+
Requires-Dist: autogluon.common ==1.1.0b20240409
|
|
57
|
+
Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.1.0b20240409
|
|
58
58
|
Provides-Extra: all
|
|
59
|
-
Requires-Dist: optimum[onnxruntime] <1.
|
|
60
|
-
Requires-Dist: optimum[nncf,openvino] <1.18,>=1.17 ; extra == 'all'
|
|
59
|
+
Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'all'
|
|
61
60
|
Provides-Extra: chronos-onnx
|
|
62
|
-
Requires-Dist: optimum[onnxruntime] <1.
|
|
61
|
+
Requires-Dist: optimum[onnxruntime] <1.19,>=1.17 ; extra == 'chronos-onnx'
|
|
63
62
|
Provides-Extra: chronos-openvino
|
|
64
|
-
Requires-Dist: optimum[nncf,openvino] <1.
|
|
63
|
+
Requires-Dist: optimum-intel[nncf,openvino] <1.17,>=1.15 ; extra == 'chronos-openvino'
|
|
64
|
+
Requires-Dist: optimum[nncf,openvino] <1.19,>=1.17 ; extra == 'chronos-openvino'
|
|
65
65
|
Provides-Extra: tests
|
|
66
66
|
Requires-Dist: pytest ; extra == 'tests'
|
|
67
67
|
Requires-Dist: ruff >=0.0.285 ; extra == 'tests'
|
|
@@ -1,10 +1,10 @@
|
|
|
1
|
-
autogluon.timeseries-1.
|
|
1
|
+
autogluon.timeseries-1.1.0b20240409-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
2
|
autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
|
|
3
3
|
autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
|
|
4
4
|
autogluon/timeseries/learner.py,sha256=fPIV2p0BMWcZr5fwOkNsJrk8RxK-IYUH_VON3_YXKOQ,13750
|
|
5
5
|
autogluon/timeseries/predictor.py,sha256=A-YkJGKrYGXGlmtIHd9CDMmudBSKcBdnOCJK4oGsQr8,81222
|
|
6
6
|
autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
|
|
7
|
-
autogluon/timeseries/version.py,sha256=
|
|
7
|
+
autogluon/timeseries/version.py,sha256=ACrO9T3KI3r4-b2HTTFpVrIdjO5Xc59N9PjfRI0dV7Y,90
|
|
8
8
|
autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
|
|
9
9
|
autogluon/timeseries/configs/presets_configs.py,sha256=ZVV8BsnGnnHPgjBtJBqF-H35MYUdzRBQ8FP7zA3_11g,1949
|
|
10
10
|
autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
|
|
@@ -17,14 +17,15 @@ autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgioo
|
|
|
17
17
|
autogluon/timeseries/models/__init__.py,sha256=HFjDOYKQWaGlgQWiLlOvfwE2dH0uDmeKJFC8GDL987c,1271
|
|
18
18
|
autogluon/timeseries/models/presets.py,sha256=p36ROcuOnixgGsI1zBdr9VM-MH2pKCiJCS2Ofb4xT8o,11243
|
|
19
19
|
autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ82trEfnT-nol2AAOIxBg,102
|
|
20
|
-
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=
|
|
20
|
+
autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=q5yVFyFJPaMVtW48tr2Pw-hgedM5upvc-93qjN4Li68,23435
|
|
21
21
|
autogluon/timeseries/models/abstract/model_trial.py,sha256=ENPg_7nsdxIvaNM0o0UShZ3x8jFlRmwRc5m0fGPC0TM,3720
|
|
22
22
|
autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
|
|
23
23
|
autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=9gNuCWf8vVfVPiXppwG5l_3mLbZZ6i5pHKTM-rSk5Ww,30977
|
|
24
24
|
autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
|
|
25
25
|
autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
|
|
26
|
-
autogluon/timeseries/models/chronos/model.py,sha256=
|
|
26
|
+
autogluon/timeseries/models/chronos/model.py,sha256=wG4tlTwpFiADu-KQ3TYg-hz7hGz1vPBU__DzyQrikdI,14643
|
|
27
27
|
autogluon/timeseries/models/chronos/pipeline.py,sha256=caR4tx-MZnrPeiU_Rra566-OP_SpodtOgcU7P0Hw0Vc,20784
|
|
28
|
+
autogluon/timeseries/models/chronos/utils.py,sha256=dl7pytUFmosFVfBcBAGA0JqMJp4cTQ3DmM9Mdjap9no,2124
|
|
28
29
|
autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
|
|
29
30
|
autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
|
|
30
31
|
autogluon/timeseries/models/ensemble/greedy_ensemble.py,sha256=5HvZuW5osgsZg3V69k82nKEOy_YgeH1JTfQa7F3cU7s,7220
|
|
@@ -33,12 +34,12 @@ autogluon/timeseries/models/gluonts/abstract_gluonts.py,sha256=X1l_MexAoyBNMGiJr
|
|
|
33
34
|
autogluon/timeseries/models/gluonts/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
35
|
autogluon/timeseries/models/gluonts/torch/models.py,sha256=PVDns7CnZtJTbPiCw-FJxahKrDjC-wj0VkwIGsodYY0,19930
|
|
35
36
|
autogluon/timeseries/models/local/__init__.py,sha256=JyckWWgMG1BTIWJqFTW6e1O-eb0LPPOwtXwmb1ErohQ,756
|
|
36
|
-
autogluon/timeseries/models/local/abstract_local_model.py,sha256=
|
|
37
|
+
autogluon/timeseries/models/local/abstract_local_model.py,sha256=pbuS8G1xUisOSMaKrsfxRdmTsZTBvFjldSTn6inyr_Q,11860
|
|
37
38
|
autogluon/timeseries/models/local/naive.py,sha256=iwRcFMFmJKPWPbD9TWaIUS51oav69F_VAp6-jb_5SUE,7249
|
|
38
39
|
autogluon/timeseries/models/local/npts.py,sha256=Bp74doKnfpGE8ywP4FWOCI_RwRMsmgocYDfGtq764DA,4143
|
|
39
40
|
autogluon/timeseries/models/local/statsforecast.py,sha256=oDYKKM2LZXEQLhPLEgZZWhvSEC1iE1wBexpl8P-Cxwc,32991
|
|
40
41
|
autogluon/timeseries/models/multi_window/__init__.py,sha256=Bq7AT2Jxdd4WNqmjTdzeqgNiwn1NCyWp4tBIWaM-zfI,60
|
|
41
|
-
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=
|
|
42
|
+
autogluon/timeseries/models/multi_window/multi_window_model.py,sha256=HiujLv8MJ31fWxRM5iXG2PzobFn4Mus0nJPu0MP2Rw4,11374
|
|
42
43
|
autogluon/timeseries/trainer/__init__.py,sha256=lxiOT-Gc6BEnr_yWQqra85kEngeM_wtH2SCaRbmC_qE,170
|
|
43
44
|
autogluon/timeseries/trainer/abstract_trainer.py,sha256=2nPLskmbOGRzkj6ttX0tHVkj9h2Y72MHaZy7L78MBZQ,59100
|
|
44
45
|
autogluon/timeseries/trainer/auto_trainer.py,sha256=psJFZBwWWPlLjNwAgvO4OUJXsRW1sTN2YS9a4pdoeoE,3344
|
|
@@ -51,11 +52,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=MsqIHY14m3QMjSwwtE7Uo1oNwepWU
|
|
|
51
52
|
autogluon/timeseries/utils/datetime/lags.py,sha256=kcU4liKbHj7KP2ajNU-KLZ8OYSU35EgT4kJjZNSw0Zg,5875
|
|
52
53
|
autogluon/timeseries/utils/datetime/seasonality.py,sha256=kgK_ukw2wCviEB7CZXRVC5HZpBJZu9IsRrvCJ9E_rOE,755
|
|
53
54
|
autogluon/timeseries/utils/datetime/time_features.py,sha256=pROkYyxETQ8rHKfPGhf2paB73C7rWJ2Ui0cCswLqbBg,2562
|
|
54
|
-
autogluon.timeseries-1.
|
|
55
|
-
autogluon.timeseries-1.
|
|
56
|
-
autogluon.timeseries-1.
|
|
57
|
-
autogluon.timeseries-1.
|
|
58
|
-
autogluon.timeseries-1.
|
|
59
|
-
autogluon.timeseries-1.
|
|
60
|
-
autogluon.timeseries-1.
|
|
61
|
-
autogluon.timeseries-1.
|
|
55
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
56
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/METADATA,sha256=9so2n3jb0bCI51fpMa01ZCBlBKYr1TTBof2SEaS7XN8,12543
|
|
57
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
58
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
59
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
60
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
61
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
62
|
+
autogluon.timeseries-1.1.0b20240409.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|