autogluon.timeseries 1.0.1b20240406__py3-none-any.whl → 1.0.1b20240407__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -181,7 +181,8 @@ class ChronosModel(AbstractTimeSeriesModel):
181
181
  )
182
182
  self.context_length = self.maximum_context_length
183
183
 
184
- model_path_safe = str.replace(model_path_input, "/", "__")
184
+ # we truncate the name to avoid long path errors on Windows
185
+ model_path_safe = str(model_path_input).replace("/", "__").replace(os.path.sep, "__")[-50:]
185
186
  name = (name if name is not None else "Chronos") + f"[{model_path_safe}]"
186
187
 
187
188
  super().__init__(
@@ -451,8 +451,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
451
451
 
452
452
  data.static_features["store_id"] = data.static_features["store_id"].astype("category")
453
453
 
454
- If provided data is an instance of pandas DataFrame, AutoGluon will attempt to automatically convert it
455
- to a ``TimeSeriesDataFrame``.
454
+ If provided data is a path or a pandas.DataFrame, AutoGluon will attempt to automatically convert it to a
455
+ ``TimeSeriesDataFrame``.
456
456
 
457
457
  tuning_data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
458
458
  Data reserved for model selection and hyperparameter tuning, rather than training individual models. Also
@@ -472,8 +472,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
472
472
  If ``train_data`` has past covariates or static features, ``tuning_data`` must have also include them (with
473
473
  same columns names and dtypes).
474
474
 
475
- If provided data is an instance of pandas DataFrame, AutoGluon will attempt to automatically convert it
476
- to a ``TimeSeriesDataFrame``.
475
+ If provided data is a path or a pandas.DataFrame, AutoGluon will attempt to automatically convert it to a
476
+ ``TimeSeriesDataFrame``.
477
477
 
478
478
  time_limit : int, optional
479
479
  Approximately how long :meth:`~autogluon.timeseries.TimeSeriesPredictor.fit` will run (wall-clock time in
@@ -855,8 +855,11 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
855
855
  Parameters
856
856
  ----------
857
857
  data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]
858
- The data to evaluate the best model on. The last ``prediction_length`` time steps of the data set, for each
859
- item, will be held out for prediction and forecast accuracy will be calculated on these time steps.
858
+ The data to evaluate the best model on. The last ``prediction_length`` time steps of each time series in
859
+ ``data`` will be held out for prediction and forecast accuracy will be calculated on these time steps.
860
+
861
+ Must include both historic and future data (i.e., length of all time series in ``data`` must be at least
862
+ ``prediction_length + 1``).
860
863
 
861
864
  If ``known_covariates_names`` were specified when creating the predictor, ``data`` must include the columns
862
865
  listed in ``known_covariates_names`` with the covariates values aligned with the target time series.
@@ -1179,8 +1182,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1179
1182
  Parameters
1180
1183
  ----------
1181
1184
  data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
1182
- dataset used for additional evaluation. If not provided, the validation set used during training will be
1183
- used.
1185
+ dataset used for additional evaluation. Must include both historic and future data (i.e., length of all
1186
+ time series in ``data`` must be at least ``prediction_length + 1``).
1184
1187
 
1185
1188
  If ``known_covariates_names`` were specified when creating the predictor, ``data`` must include the columns
1186
1189
  listed in ``known_covariates_names`` with the covariates values aligned with the target time series.
@@ -1188,8 +1191,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1188
1191
  If ``train_data`` used to train the predictor contained past covariates or static features, then ``data``
1189
1192
  must also include them (with same column names and dtypes).
1190
1193
 
1191
- If provided data is an instance of pandas DataFrame, AutoGluon will attempt to automatically convert it
1192
- to a ``TimeSeriesDataFrame``.
1194
+ If provided data is a path or a pandas.DataFrame, AutoGluon will attempt to automatically convert it to a
1195
+ ``TimeSeriesDataFrame``.
1193
1196
 
1194
1197
  display : bool, default = False
1195
1198
  If True, the leaderboard DataFrame will be printed.
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.0.1b20240406'
2
+ __version__ = '1.0.1b20240407'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.1b20240406
3
+ Version: 1.0.1b20240407
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -52,12 +52,12 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
52
52
  Requires-Dist: tqdm <5,>=4.38
53
53
  Requires-Dist: orjson ~=3.9
54
54
  Requires-Dist: tensorboard <3,>=2.9
55
- Requires-Dist: autogluon.core[raytune] ==1.0.1b20240406
56
- Requires-Dist: autogluon.common ==1.0.1b20240406
57
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.1b20240406
55
+ Requires-Dist: autogluon.core[raytune] ==1.0.1b20240407
56
+ Requires-Dist: autogluon.common ==1.0.1b20240407
57
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.1b20240407
58
58
  Provides-Extra: all
59
- Requires-Dist: optimum[nncf,openvino] <1.18,>=1.17 ; extra == 'all'
60
59
  Requires-Dist: optimum[onnxruntime] <1.18,>=1.17 ; extra == 'all'
60
+ Requires-Dist: optimum[nncf,openvino] <1.18,>=1.17 ; extra == 'all'
61
61
  Provides-Extra: chronos-onnx
62
62
  Requires-Dist: optimum[onnxruntime] <1.18,>=1.17 ; extra == 'chronos-onnx'
63
63
  Provides-Extra: chronos-openvino
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.0.1b20240406-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.0.1b20240407-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=fPIV2p0BMWcZr5fwOkNsJrk8RxK-IYUH_VON3_YXKOQ,13750
5
- autogluon/timeseries/predictor.py,sha256=CbtYjj0XOHzl86gmz4NlF-C-AumwJrF_cdsKT6M6ql0,81011
5
+ autogluon/timeseries/predictor.py,sha256=A-YkJGKrYGXGlmtIHd9CDMmudBSKcBdnOCJK4oGsQr8,81222
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=hLs5RwjSILRXf-EmvoO1fvxeoOqWXitaB0VO3Ptt9-c,90
7
+ autogluon/timeseries/version.py,sha256=1Ugyy34qfhivv7ihojlqRjgPHI1LIm12QE5CeUPGgNQ,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=ZVV8BsnGnnHPgjBtJBqF-H35MYUdzRBQ8FP7zA3_11g,1949
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -23,7 +23,7 @@ autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClk
23
23
  autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=9gNuCWf8vVfVPiXppwG5l_3mLbZZ6i5pHKTM-rSk5Ww,30977
24
24
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
25
25
  autogluon/timeseries/models/chronos/__init__.py,sha256=wT77HzTtmQxW3sw2k0mA5Ot6PSHivX-Uvn5fjM05EU4,60
26
- autogluon/timeseries/models/chronos/model.py,sha256=5DqxDrm2zO2lShmTviZOtlKUsjpcZSsIac2G-sVSfDI,14873
26
+ autogluon/timeseries/models/chronos/model.py,sha256=8mZBsjZGP6Q1IGneTiSkcSFvkI6eVBFwweT0t6YUzNk,14974
27
27
  autogluon/timeseries/models/chronos/pipeline.py,sha256=caR4tx-MZnrPeiU_Rra566-OP_SpodtOgcU7P0Hw0Vc,20784
28
28
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
29
29
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
@@ -51,11 +51,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=MsqIHY14m3QMjSwwtE7Uo1oNwepWU
51
51
  autogluon/timeseries/utils/datetime/lags.py,sha256=kcU4liKbHj7KP2ajNU-KLZ8OYSU35EgT4kJjZNSw0Zg,5875
52
52
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=kgK_ukw2wCviEB7CZXRVC5HZpBJZu9IsRrvCJ9E_rOE,755
53
53
  autogluon/timeseries/utils/datetime/time_features.py,sha256=pROkYyxETQ8rHKfPGhf2paB73C7rWJ2Ui0cCswLqbBg,2562
54
- autogluon.timeseries-1.0.1b20240406.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
55
- autogluon.timeseries-1.0.1b20240406.dist-info/METADATA,sha256=YG12p0tq6vbCCp-72ac1u7YDqgMBes37Ki8YTOBtnH8,12524
56
- autogluon.timeseries-1.0.1b20240406.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
57
- autogluon.timeseries-1.0.1b20240406.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
58
- autogluon.timeseries-1.0.1b20240406.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
59
- autogluon.timeseries-1.0.1b20240406.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
- autogluon.timeseries-1.0.1b20240406.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
61
- autogluon.timeseries-1.0.1b20240406.dist-info/RECORD,,
54
+ autogluon.timeseries-1.0.1b20240407.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
55
+ autogluon.timeseries-1.0.1b20240407.dist-info/METADATA,sha256=f362hyqf6kdu03RoWnWlIKxmPiWNyQca9Fz6edJBAY4,12524
56
+ autogluon.timeseries-1.0.1b20240407.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
57
+ autogluon.timeseries-1.0.1b20240407.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
58
+ autogluon.timeseries-1.0.1b20240407.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
59
+ autogluon.timeseries-1.0.1b20240407.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
60
+ autogluon.timeseries-1.0.1b20240407.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
61
+ autogluon.timeseries-1.0.1b20240407.dist-info/RECORD,,