autogluon.timeseries 1.0.0b20231126__py3-none-any.whl → 1.0.0b20231127__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -55,7 +55,7 @@ class SQL(TimeSeriesScorer):
55
55
 
56
56
  .. math::
57
57
 
58
- \operatorname{SQL} = \frac{1}{\sum_{i=1}^{N} \sum_{t=T+1}^{T+H} |y_{i, t}|} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t})
58
+ \operatorname{SQL} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \frac{1}{a_i} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t})
59
59
 
60
60
  where :math:`a_i` is the historic absolute seasonal error defined as
61
61
 
@@ -82,7 +82,7 @@ class TimeSeriesPredictor:
82
82
  - ``"SMAPE"``: "symmetric" mean absolute percentage error
83
83
  - ``"WAPE"``: weighted absolute percentage error
84
84
 
85
- For more information about these metrics, see https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-metrics.html.
85
+ For more information about these metrics, see :ref:`Forecasting Time Series - Evaluation Metrics <forecasting_metrics>`.
86
86
  eval_metric_seasonal_period : int, optional
87
87
  Seasonal period used to compute some evaluation metrics such as mean absolute scaled error (MASE). Defaults to
88
88
  ``None``, in which case the seasonal period is computed based on the data frequency.
@@ -495,7 +495,7 @@ class TimeSeriesPredictor:
495
495
  * ``Theta`` with additive seasonal decomposition (all other parameters set to their defaults)
496
496
  * ``Theta`` with seasonality disabled (all other parameters set to their defaults)
497
497
 
498
- Full list of available models and their hyperparameters is provided in :ref:`forecasting_zoo`.
498
+ Full list of available models and their hyperparameters is provided in :ref:`Forecasting Time Series - Model Zoo <forecasting_model_zoo>`.
499
499
 
500
500
  The hyperparameters for each model can be fixed values (as shown above), or search spaces over which
501
501
  hyperparameter optimization is performed. A search space should only be provided when
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.0.0b20231126'
2
+ __version__ = '1.0.0b20231127'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.0b20231126
3
+ Version: 1.0.0b20231127
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -50,9 +50,9 @@ Requires-Dist: utilsforecast <0.0.11,>=0.0.10
50
50
  Requires-Dist: tqdm <5,>=4.38
51
51
  Requires-Dist: orjson ~=3.9
52
52
  Requires-Dist: tensorboard <3,>=2.9
53
- Requires-Dist: autogluon.core[raytune] ==1.0.0b20231126
54
- Requires-Dist: autogluon.common ==1.0.0b20231126
55
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.0b20231126
53
+ Requires-Dist: autogluon.core[raytune] ==1.0.0b20231127
54
+ Requires-Dist: autogluon.common ==1.0.0b20231127
55
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.0b20231127
56
56
  Provides-Extra: all
57
57
  Provides-Extra: tests
58
58
  Requires-Dist: pytest ; extra == 'tests'
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.0.0b20231126-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.0.0b20231127-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=HVfsoWTG3dXBCc7JbPfHCCYCMwL3zlrqHwLBG33MTJ8,9633
5
- autogluon/timeseries/predictor.py,sha256=sohEmnK0Z-sf7zhQRR6i7zTtuTigs0QXQrzhxKx8v9o,59016
5
+ autogluon/timeseries/predictor.py,sha256=z1uU7nsfGlTeIIxW_AMmkFRZhVpw68YAHz-gZypJ74Y,59059
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=s76ADu5d8AtleubIyY42XFsPzTOz5rZ0ue803dFTiCA,90
7
+ autogluon/timeseries/version.py,sha256=0TRLSL8eOQEGI2iMwVA6FsQFxTir-_VTAqN9TzoBJnc,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=1u6tbOKJdIRULYDu41dlJwXRNswWsjBDF0aR2YhyMQs,479
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -12,7 +12,7 @@ autogluon/timeseries/dataset/ts_dataframe.py,sha256=PgOz-88hbxNnhbpp0DMJbGBdtM6w
12
12
  autogluon/timeseries/metrics/__init__.py,sha256=gzvHptT-UdvB26CLOoFIznaKT-5FDwuVO37gaYPp88o,1835
13
13
  autogluon/timeseries/metrics/abstract.py,sha256=-muJuc30zSqHYXNBYyGocL-4zT7bt4SRjW9ddWcCq9w,8069
14
14
  autogluon/timeseries/metrics/point.py,sha256=WdhUrKB0ilO_N9-jHljQBQOj8mDvlNCfwMAD0RO61kI,11277
15
- autogluon/timeseries/metrics/quantile.py,sha256=s43wAVknN_93i78AjiLrlrWreYUPhrXlvmbEO9Bjkss,3884
15
+ autogluon/timeseries/metrics/quantile.py,sha256=q8meqzxVc9qN8mTlUUImOaelZYQoVDmijWphZcafJTQ,3867
16
16
  autogluon/timeseries/metrics/utils.py,sha256=eJ63TCR-UwbeJ1c2Qm7B2q-8B3sFthPgiooEccrf2Kc,912
17
17
  autogluon/timeseries/models/__init__.py,sha256=4UJYnjeBCP6-NV738KF852Fa3qw5ygS4SBuOFAUmwoA,1217
18
18
  autogluon/timeseries/models/presets.py,sha256=xmuqxmHrnpFih0GNrkvOP-Sgs2STfLAv5cSPl6Bf4y8,11183
@@ -48,11 +48,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=MsqIHY14m3QMjSwwtE7Uo1oNwepWU
48
48
  autogluon/timeseries/utils/datetime/lags.py,sha256=kcU4liKbHj7KP2ajNU-KLZ8OYSU35EgT4kJjZNSw0Zg,5875
49
49
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=kgK_ukw2wCviEB7CZXRVC5HZpBJZu9IsRrvCJ9E_rOE,755
50
50
  autogluon/timeseries/utils/datetime/time_features.py,sha256=pROkYyxETQ8rHKfPGhf2paB73C7rWJ2Ui0cCswLqbBg,2562
51
- autogluon.timeseries-1.0.0b20231126.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
52
- autogluon.timeseries-1.0.0b20231126.dist-info/METADATA,sha256=2qrKEEhDrrdB58gm8m_66Rzcxwv0QeFIklPsqW-YkXU,13324
53
- autogluon.timeseries-1.0.0b20231126.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
54
- autogluon.timeseries-1.0.0b20231126.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
55
- autogluon.timeseries-1.0.0b20231126.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
56
- autogluon.timeseries-1.0.0b20231126.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
57
- autogluon.timeseries-1.0.0b20231126.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
58
- autogluon.timeseries-1.0.0b20231126.dist-info/RECORD,,
51
+ autogluon.timeseries-1.0.0b20231127.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
52
+ autogluon.timeseries-1.0.0b20231127.dist-info/METADATA,sha256=nZursp-FJLQpkdQzPe7m_3kO5_3jxqFWvh92fRv-Zk4,13324
53
+ autogluon.timeseries-1.0.0b20231127.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
54
+ autogluon.timeseries-1.0.0b20231127.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
55
+ autogluon.timeseries-1.0.0b20231127.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
56
+ autogluon.timeseries-1.0.0b20231127.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
57
+ autogluon.timeseries-1.0.0b20231127.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
58
+ autogluon.timeseries-1.0.0b20231127.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.3)
2
+ Generator: bdist_wheel (0.42.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5