autogluon.timeseries 1.0.0b20231122__py3-none-any.whl → 1.0.0b20231124__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

@@ -296,10 +296,7 @@ class AbstractMLForecastModel(AbstractTimeSeriesModel):
296
296
 
297
297
  def _get_scale_per_item(self, item_ids: pd.Index) -> pd.Series:
298
298
  """Extract the '_scale' values from the scaler object, if available."""
299
- if self._scaler is not None:
300
- return self._scaler.stats_["_scale"].copy().reindex(item_ids)
301
- else:
302
- return pd.Series(1.0, index=item_ids)
299
+ raise NotImplementedError
303
300
 
304
301
  def _remove_short_ts_and_generate_fallback_forecast(
305
302
  self,
@@ -469,7 +466,9 @@ class DirectTabularModel(AbstractMLForecastModel):
469
466
 
470
467
  raw_predictions = self._mlf.models_["mean"].predict(df)
471
468
  predictions = self._postprocess_predictions(raw_predictions, repeated_item_ids=df[MLF_ITEMID])
472
- predictions[[MLF_ITEMID, MLF_TIMESTAMP]] = df[[MLF_ITEMID, MLF_TIMESTAMP]].values
469
+ # Paste columns one by one to preserve dtypes
470
+ predictions[MLF_ITEMID] = df[MLF_ITEMID].values
471
+ predictions[MLF_TIMESTAMP] = df[MLF_TIMESTAMP].values
473
472
 
474
473
  if hasattr(self._mlf.ts, "target_transforms"):
475
474
  # Ensure that transforms are fitted only on past data
@@ -498,6 +497,10 @@ class DirectTabularModel(AbstractMLForecastModel):
498
497
  column_order = ["mean"] + [col for col in predictions.columns if col != "mean"]
499
498
  return predictions[column_order]
500
499
 
500
+ def _get_scale_per_item(self, item_ids: pd.Index) -> pd.Series:
501
+ # Rescaling is applied in the inverse_transform step, no need to scale predictions
502
+ return pd.Series(1.0, index=item_ids)
503
+
501
504
  def _get_extra_tabular_init_kwargs(self) -> dict:
502
505
  if self.is_quantile_model:
503
506
  return {
@@ -603,3 +606,9 @@ class RecursiveTabularModel(AbstractMLForecastModel):
603
606
  "problem_type": ag.constants.REGRESSION,
604
607
  "eval_metric": self.eval_metric.equivalent_tabular_regression_metric or "mean_absolute_error",
605
608
  }
609
+
610
+ def _get_scale_per_item(self, item_ids: pd.Index) -> pd.Series:
611
+ if self._scaler is not None:
612
+ return self._scaler.stats_["_scale"].copy().reindex(item_ids)
613
+ else:
614
+ return pd.Series(1.0, index=item_ids)
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.0.0b20231122'
2
+ __version__ = '1.0.0b20231124'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.0b20231122
3
+ Version: 1.0.0b20231124
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -49,9 +49,10 @@ Requires-Dist: mlforecast <0.10.1,>=0.10.0
49
49
  Requires-Dist: utilsforecast <0.0.11,>=0.0.10
50
50
  Requires-Dist: tqdm <5,>=4.38
51
51
  Requires-Dist: orjson ~=3.9
52
- Requires-Dist: autogluon.core[raytune] ==1.0.0b20231122
53
- Requires-Dist: autogluon.common ==1.0.0b20231122
54
- Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.0b20231122
52
+ Requires-Dist: tensorboard <3,>=2.9
53
+ Requires-Dist: autogluon.core[raytune] ==1.0.0b20231124
54
+ Requires-Dist: autogluon.common ==1.0.0b20231124
55
+ Requires-Dist: autogluon.tabular[catboost,lightgbm,xgboost] ==1.0.0b20231124
55
56
  Provides-Extra: all
56
57
  Provides-Extra: tests
57
58
  Requires-Dist: pytest ; extra == 'tests'
@@ -1,10 +1,10 @@
1
- autogluon.timeseries-1.0.0b20231122-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.timeseries-1.0.0b20231124-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/timeseries/__init__.py,sha256=_CrLLc1fkjen7UzWoO0Os8WZoHOgvZbHKy46I8v_4k4,304
3
3
  autogluon/timeseries/evaluator.py,sha256=l642tYfTHsl8WVIq_vV6qhgAFVFr9UuZD7gLra3A_Kc,250
4
4
  autogluon/timeseries/learner.py,sha256=HVfsoWTG3dXBCc7JbPfHCCYCMwL3zlrqHwLBG33MTJ8,9633
5
5
  autogluon/timeseries/predictor.py,sha256=sohEmnK0Z-sf7zhQRR6i7zTtuTigs0QXQrzhxKx8v9o,59016
6
6
  autogluon/timeseries/splitter.py,sha256=eghGwAAN2_cxGk5aJBILgjGWtLzjxJcytMy49gg_q18,3061
7
- autogluon/timeseries/version.py,sha256=Rdh18YbY6uBsX_CKLjMj7xiq_G7Jnakp4KzAO5Y-4uQ,90
7
+ autogluon/timeseries/version.py,sha256=-k59F7BtYG5KzVCW8NlMl325YMkn2027VY6iivBRmI4,90
8
8
  autogluon/timeseries/configs/__init__.py,sha256=BTtHIPCYeGjqgOcvqb8qPD4VNX-ICKOg6wnkew1cPOE,98
9
9
  autogluon/timeseries/configs/presets_configs.py,sha256=1u6tbOKJdIRULYDu41dlJwXRNswWsjBDF0aR2YhyMQs,479
10
10
  autogluon/timeseries/dataset/__init__.py,sha256=UvnhAN5tjgxXTHoZMQDy64YMDj4Xxa68yY7NP4vAw0o,81
@@ -20,7 +20,7 @@ autogluon/timeseries/models/abstract/__init__.py,sha256=wvDsQAZIV0N3AwBeMaGItoQ8
20
20
  autogluon/timeseries/models/abstract/abstract_timeseries_model.py,sha256=knKaYsx_sn_KpKgzZhiTCmaTG_W7TAumgnpGXUwzAOU,21841
21
21
  autogluon/timeseries/models/abstract/model_trial.py,sha256=_5Nrk4CrG3u35tTd3elekfdnQI2Pn3P9AGS5CE6nuyg,3749
22
22
  autogluon/timeseries/models/autogluon_tabular/__init__.py,sha256=r9i6jWcyeLHYClkcMSKRVsfrkBUMxpDrTATNTBc_qgQ,136
23
- autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=F9hehdIuskalbyTFIxobCQGYSuGbL5aE7--pCCMHUmY,29440
23
+ autogluon/timeseries/models/autogluon_tabular/mlforecast.py,sha256=HNol4LnuElP1a9WBbHjIg4ycHS3tho1f7t7MCgk6v3g,29831
24
24
  autogluon/timeseries/models/autogluon_tabular/utils.py,sha256=4-gTrBtizxeMVQlsuscugPqw9unaXWXhS1TVVssfzYY,2125
25
25
  autogluon/timeseries/models/ensemble/__init__.py,sha256=kFr11Gmt7lQJu9Rr8HuIPphQN5l1TsoorfbJm_O3a_s,128
26
26
  autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py,sha256=tifETwmiEGt-YtQ9eNK7ojJ3fBvtFMUJvisbfkIJ7gw,3393
@@ -48,11 +48,11 @@ autogluon/timeseries/utils/datetime/base.py,sha256=MsqIHY14m3QMjSwwtE7Uo1oNwepWU
48
48
  autogluon/timeseries/utils/datetime/lags.py,sha256=kcU4liKbHj7KP2ajNU-KLZ8OYSU35EgT4kJjZNSw0Zg,5875
49
49
  autogluon/timeseries/utils/datetime/seasonality.py,sha256=kgK_ukw2wCviEB7CZXRVC5HZpBJZu9IsRrvCJ9E_rOE,755
50
50
  autogluon/timeseries/utils/datetime/time_features.py,sha256=pROkYyxETQ8rHKfPGhf2paB73C7rWJ2Ui0cCswLqbBg,2562
51
- autogluon.timeseries-1.0.0b20231122.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
52
- autogluon.timeseries-1.0.0b20231122.dist-info/METADATA,sha256=7E145kwFYFRjBAOz7iQgUpQvdJGgqSJxTlMUlQ8MGMw,13288
53
- autogluon.timeseries-1.0.0b20231122.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
54
- autogluon.timeseries-1.0.0b20231122.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
55
- autogluon.timeseries-1.0.0b20231122.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
56
- autogluon.timeseries-1.0.0b20231122.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
57
- autogluon.timeseries-1.0.0b20231122.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
58
- autogluon.timeseries-1.0.0b20231122.dist-info/RECORD,,
51
+ autogluon.timeseries-1.0.0b20231124.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
52
+ autogluon.timeseries-1.0.0b20231124.dist-info/METADATA,sha256=S1f5aKQr741Y-QzUCMNAH6W1PEp5e7LNRSvz3g6SKbQ,13324
53
+ autogluon.timeseries-1.0.0b20231124.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
54
+ autogluon.timeseries-1.0.0b20231124.dist-info/WHEEL,sha256=Xo9-1PvkuimrydujYJAjF7pCkriuXBpUPEjma1nZyJ0,92
55
+ autogluon.timeseries-1.0.0b20231124.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
56
+ autogluon.timeseries-1.0.0b20231124.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
57
+ autogluon.timeseries-1.0.0b20231124.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
58
+ autogluon.timeseries-1.0.0b20231124.dist-info/RECORD,,