autogluon.tabular 1.4.1b20251212__py3-none-any.whl → 1.5.0b20251220__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (43) hide show
  1. autogluon/tabular/configs/hyperparameter_configs.py +4 -0
  2. autogluon/tabular/configs/presets_configs.py +39 -2
  3. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +2 -44
  4. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +2 -0
  5. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +2 -0
  6. autogluon/tabular/learner/default_learner.py +1 -0
  7. autogluon/tabular/models/__init__.py +3 -1
  8. autogluon/tabular/models/abstract/__init__.py +0 -0
  9. autogluon/tabular/models/abstract/abstract_torch_model.py +148 -0
  10. autogluon/tabular/models/catboost/catboost_model.py +1 -1
  11. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +5 -1
  12. autogluon/tabular/models/lgb/lgb_model.py +58 -8
  13. autogluon/tabular/models/lgb/lgb_utils.py +2 -2
  14. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +14 -1
  15. autogluon/tabular/models/mitra/mitra_model.py +53 -22
  16. autogluon/tabular/models/realmlp/realmlp_model.py +8 -2
  17. autogluon/tabular/models/tabdpt/__init__.py +0 -0
  18. autogluon/tabular/models/tabdpt/tabdpt_model.py +253 -0
  19. autogluon/tabular/models/tabicl/tabicl_model.py +15 -2
  20. autogluon/tabular/models/tabm/tabm_model.py +23 -79
  21. autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +451 -0
  22. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +86 -8
  23. autogluon/tabular/models/tabprep/__init__.py +0 -0
  24. autogluon/tabular/models/tabprep/prep_lgb_model.py +21 -0
  25. autogluon/tabular/models/tabprep/prep_mixin.py +220 -0
  26. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +1 -1
  27. autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +12 -4
  28. autogluon/tabular/models/xgboost/xgboost_model.py +2 -0
  29. autogluon/tabular/predictor/predictor.py +47 -18
  30. autogluon/tabular/registry/_ag_model_registry.py +8 -2
  31. autogluon/tabular/testing/fit_helper.py +33 -0
  32. autogluon/tabular/trainer/abstract_trainer.py +45 -9
  33. autogluon/tabular/trainer/auto_trainer.py +5 -0
  34. autogluon/tabular/version.py +1 -1
  35. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/METADATA +38 -37
  36. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/RECORD +43 -33
  37. /autogluon.tabular-1.4.1b20251212-py3.11-nspkg.pth → /autogluon.tabular-1.5.0b20251220-py3.11-nspkg.pth +0 -0
  38. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/WHEEL +0 -0
  39. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/licenses/LICENSE +0 -0
  40. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/licenses/NOTICE +0 -0
  41. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/namespace_packages.txt +0 -0
  42. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/top_level.txt +0 -0
  43. {autogluon_tabular-1.4.1b20251212.dist-info → autogluon_tabular-1.5.0b20251220.dist-info}/zip-safe +0 -0
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20251212"
3
+ __version__ = "1.5.0b20251220"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20251212
3
+ Version: 1.5.0b20251220
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,17 +40,16 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.4.1b20251212
44
- Requires-Dist: autogluon.features==1.4.1b20251212
43
+ Requires-Dist: autogluon.core==1.5.0b20251220
44
+ Requires-Dist: autogluon.features==1.5.0b20251220
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
48
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
49
48
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
50
49
  Provides-Extra: xgboost
51
- Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
50
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "xgboost"
52
51
  Provides-Extra: realmlp
53
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
52
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "realmlp"
54
53
  Provides-Extra: interpret
55
54
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
56
55
  Provides-Extra: fastai
@@ -60,7 +59,9 @@ Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
60
59
  Provides-Extra: tabm
61
60
  Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
62
61
  Provides-Extra: tabpfn
63
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
62
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabpfn"
63
+ Provides-Extra: tabdpt
64
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabdpt"
64
65
  Provides-Extra: tabpfnmix
65
66
  Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
66
67
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
@@ -74,11 +75,11 @@ Requires-Dist: transformers; extra == "mitra"
74
75
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
75
76
  Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
76
77
  Provides-Extra: tabicl
77
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
78
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
78
79
  Provides-Extra: ray
79
- Requires-Dist: autogluon.core[all]==1.4.1b20251212; extra == "ray"
80
+ Requires-Dist: autogluon.core[all]==1.5.0b20251220; extra == "ray"
80
81
  Provides-Extra: skex
81
- Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
82
+ Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
82
83
  Provides-Extra: imodels
83
84
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
84
85
  Provides-Extra: skl2onnx
@@ -88,44 +89,44 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
88
89
  Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
89
90
  Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
90
91
  Provides-Extra: all
91
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
92
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
93
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
94
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
95
- Requires-Dist: torch<2.10,>=2.6; extra == "all"
96
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
97
- Requires-Dist: loguru; extra == "all"
98
- Requires-Dist: autogluon.core[all]==1.4.1b20251212; extra == "all"
92
+ Requires-Dist: autogluon.core[all]==1.5.0b20251220; extra == "all"
99
93
  Requires-Dist: transformers; extra == "all"
94
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
100
95
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
96
+ Requires-Dist: torch<2.10,>=2.6; extra == "all"
97
+ Requires-Dist: einx; extra == "all"
101
98
  Requires-Dist: spacy<3.9; extra == "all"
99
+ Requires-Dist: loguru; extra == "all"
102
100
  Requires-Dist: omegaconf; extra == "all"
103
- Requires-Dist: einx; extra == "all"
104
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
101
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
102
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
103
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
104
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
105
105
  Provides-Extra: tabarena
106
- Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
107
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
108
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
109
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
110
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
111
- Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
112
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
113
- Requires-Dist: loguru; extra == "tabarena"
114
- Requires-Dist: autogluon.core[all]==1.4.1b20251212; extra == "tabarena"
115
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
106
+ Requires-Dist: autogluon.core[all]==1.5.0b20251220; extra == "tabarena"
116
107
  Requires-Dist: transformers; extra == "tabarena"
117
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
118
108
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
119
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
109
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
110
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
111
+ Requires-Dist: einx; extra == "tabarena"
120
112
  Requires-Dist: spacy<3.9; extra == "tabarena"
113
+ Requires-Dist: loguru; extra == "tabarena"
121
114
  Requires-Dist: omegaconf; extra == "tabarena"
122
- Requires-Dist: einx; extra == "tabarena"
123
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
115
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
116
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
117
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
118
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
119
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
120
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
121
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
122
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
123
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
124
124
  Provides-Extra: tests
125
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
127
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
128
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
126
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
127
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tests"
128
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tests"
129
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tests"
129
130
  Requires-Dist: torch<2.10,>=2.6; extra == "tests"
130
131
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
131
132
  Requires-Dist: einops<0.9,>=0.7; extra == "tests"
@@ -1,15 +1,17 @@
1
- autogluon.tabular-1.4.1b20251212-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
1
+ autogluon.tabular-1.5.0b20251220-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=0mbAiIGq_EhDp9cHb-TFRx9KRI5rLcXhrs02x0148D0,91
3
+ autogluon/tabular/version.py,sha256=aE1rHGK38Xu8HuOh8TYGH9OcY_txqcJgnWq3JhrUK2g,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
- autogluon/tabular/configs/hyperparameter_configs.py,sha256=aQ1rrF8P0MX4Ic5M33O96JtKV-K7YpDrgJmWhYmEyug,6848
7
+ autogluon/tabular/configs/hyperparameter_configs.py,sha256=yAZaoHJkxxXW1KNTA69GhdyPtdSBEVbd-sQ4RJ3PWXg,7214
8
8
  autogluon/tabular/configs/pipeline_presets.py,sha256=ccrT3C56pYHW8x8VB_Q9zAu_eCxlgNQpt7TXpVUzDfE,4761
9
- autogluon/tabular/configs/presets_configs.py,sha256=_C9wTfKVRyoomtYa04RqNyw1CEOYc_5Q3QKejqDp754,7674
9
+ autogluon/tabular/configs/presets_configs.py,sha256=BLjbPPK-qOFOEE3J1JWIccUDH7YVGAk3FsYM-oiOrKM,9037
10
10
  autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=6yd84vPqOk-6sLCoM_e_PlphrR2NZUjliS7L1SMKMug,29777
12
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=NXwfqZLQLx4kdvRqF6deFDdhZZKxbfgpUurdB0kqOh8,11996
12
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=taIRKDMIkNzBBaAH_o04bW7UjIIz6N4_p-oZmyoU65s,9119
13
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py,sha256=sA9p7cpAe6lmIKIjcbjQF-rTWP8e7CAh2smoeQHd98I,20201
14
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py,sha256=Ecuf9lqNL8bMFw6PaJFJdVupu5UDroodNzY8NFB_sT4,12079
13
15
  autogluon/tabular/experimental/__init__.py,sha256=PpkdMSv_pPZted1XRIuzcFWKjM-66VMUukTnCcoiW0s,100
14
16
  autogluon/tabular/experimental/_scikit_mixin.py,sha256=cKeCmtURAXZnhQGrkCBw5rmACCQF7biAWTT3qX8bM2Q,2281
15
17
  autogluon/tabular/experimental/_tabular_classifier.py,sha256=7lGoFdvkHiZS3VpcXo97q4ENV9qyIVDExlWkm0wzL3s,2527
@@ -17,17 +19,19 @@ autogluon/tabular/experimental/_tabular_regressor.py,sha256=EzEDL-19T5QUVNmLkSHN
17
19
  autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF67GCV20zo8yV51HKKj1SCY,9481
18
20
  autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
19
21
  autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
20
- autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
21
- autogluon/tabular/models/__init__.py,sha256=grZ23UfuNZ_LxoNdl-yjIUmq71TeovT5CJPhbatiqvg,1252
22
+ autogluon/tabular/learner/default_learner.py,sha256=IehXrkY22Cxua97jG598m08ojgRmMrVaw0RzPgaw_YM,24842
23
+ autogluon/tabular/models/__init__.py,sha256=3ni4OkD6fbb3IqEHIVLm6hAtjFdwl8mjsZR-Q8rwHRA,1372
22
24
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
25
  autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
24
26
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
27
+ autogluon/tabular/models/abstract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
+ autogluon/tabular/models/abstract/abstract_torch_model.py,sha256=U1FB_qHZruYKCilN2kCTUdgfs-brDbauMnC7r93RTi8,5630
25
29
  autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
30
  autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB7EchcPdSVVncxA9jEM,11355
27
31
  autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
28
32
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
33
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
30
- autogluon/tabular/models/catboost/catboost_model.py,sha256=tAT_eklRJDARJsbS72-Nn8PxLmKgIvffzjjrTI1XMXM,18041
34
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=r2TcevNIlQVAXZLrzMF5vDmY_TfQfd31QlAGjL8WEtI,18061
31
35
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
32
36
  autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
33
37
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -43,7 +47,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
43
47
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
44
48
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
45
49
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
46
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=FqT6xqhU2XoTWJ0yY_ZmT3JI6ranl63vpdPkn6JFbos,29666
50
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=YnQqZSHEUCa4-EU2C_rrjo698jtJLbEIYgP3RtQ0xv4,29783
47
51
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
52
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
49
53
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -62,8 +66,8 @@ autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-
62
66
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
63
67
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
68
  autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
65
- autogluon/tabular/models/lgb/lgb_model.py,sha256=kRIcBBIDMJ2inaZeJXO5uhAG0qUigwYseJoFQ7jzqQE,27415
66
- autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
69
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=DIZLucYXZF7kBGy54oddiPiZhmEBQvQC0P9B0FtP3l8,28897
70
+ autogluon/tabular/models/lgb/lgb_utils.py,sha256=na5qrOBZwCUxXCFGfjjQrEQ0yQE8LEOO_-8_6WnSPcI,7422
67
71
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
72
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
69
73
  autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
@@ -75,7 +79,7 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
75
79
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
76
80
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
77
81
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
78
- autogluon/tabular/models/mitra/mitra_model.py,sha256=TzjozU19zQLU09S2tM8Sfe7TiTBSDDjld-tVt5L1JGQ,13954
82
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=SLPsu1nYw62IVEYwT6WQyRhTT40sTPL07OELncSVwa0,14864
79
83
  autogluon/tabular/models/mitra/sklearn_interface.py,sha256=vyg8kkmYKzEJRWiehEqEsgZeOCV20tnZAZaaaJkwDuA,17739
80
84
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
81
85
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
@@ -88,7 +92,7 @@ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5P
88
92
  autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
89
93
  autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
90
94
  autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
91
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=tI8sN9mv3PtEBdmDxcBgzderZ7YQdtn6MxtOWAc8or8,17908
95
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=PcP2W33LakUlo1x1V-aGwFt1KYTkJN2n_rsdhCFYfhs,18379
92
96
  autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
93
97
  autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
94
98
  autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=AYxyQ1NJZ3pAp6ny-Y_hqw_4VtyW5X1AABchf7pVsSM,4340
@@ -101,7 +105,7 @@ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=o_S572-nKrhwxmEF
101
105
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
102
106
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
103
107
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=3pe_yhOGW8cbX3KgNs25s3FP0P3FzVSAS-hd4jMFjDg,14573
108
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=eOUp7fA9Tvx7z9E62JDJwFG0XFH1nh6btaKkNu0sA9c,14754
105
109
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
110
  autogluon/tabular/models/rf/rf_model.py,sha256=auvNHx0qD9Pz8rS6yNIuG9cHzFNquv8fOVS7FWZNIAw,21721
107
111
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
@@ -109,12 +113,14 @@ autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLg
109
113
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
110
114
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
111
115
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
116
+ autogluon/tabular/models/tabdpt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
+ autogluon/tabular/models/tabdpt/tabdpt_model.py,sha256=tIlwRzH3U7MO0zvTgxBO5wN4Rj0MUW5BDKsTRRZJGgA,9285
112
118
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=_Eq3g9babdC17kyvAA0rIqtZEtiRGwM2XngkbWevXpU,6283
119
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=56qooz9s5wrk_kLybRFeQ7HQG9rhNsOgDxQr_1zfpyk,6933
114
120
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
115
121
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
116
122
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
117
- autogluon/tabular/models/tabm/tabm_model.py,sha256=_SGc7R87ug9m8KGd_BgC9maJ7sjOAlYB9vtg1omwOto,13640
123
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=lj_DsMhBlIUozFGt4fE9QyUX2oN17ehuuimztRKUWHk,10952
118
124
  autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
119
125
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
120
126
  autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=NAuV3rJia-UNnFwiFU5tkz6vzZ2lokQ_12vUJ3E6wAA,16498
@@ -143,7 +149,8 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
143
149
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
144
150
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
145
151
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=nXZcq4SMV54dciOKFM57Suc9eVyXQXy-2iN6moRt2b8,14801
152
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py,sha256=dOIojZiaFtEn2Ag9AkQmZe4s-TQjcLghiZh_Vk4aims,17055
153
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dfbxNiwP-qLWOt2aKNx4zSbdPpDoC7a_TIjiHK_sr44,18219
147
154
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
148
155
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
149
156
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -151,6 +158,9 @@ autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py,sh
151
158
  autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py,sha256=FRJSelTtDaKnpsKKHphjy2rJrFX302miSdHZ0YqHxCQ,28045
152
159
  autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py,sha256=jv2ZHsGwcO4Inhxtol_tig3NoXZQR649dhmW_Kv69QY,29607
153
160
  autogluon/tabular/models/tabpfnv2/rfpfn/utils.py,sha256=vjMQsNaZZcW1BBf0hduSCtrNCtSd467xfkhsbHspUog,3489
161
+ autogluon/tabular/models/tabprep/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
+ autogluon/tabular/models/tabprep/prep_lgb_model.py,sha256=mSCWVoFIE-1ROf5v43Y3njfg5ZpXhTOUR3EnGmyTtL4,931
163
+ autogluon/tabular/models/tabprep/prep_mixin.py,sha256=ekrqtbkZ4KbAKke42Uj_E527jyI2RPfe07ycA4Rv1Og,10009
154
164
  autogluon/tabular/models/tabular_nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
155
165
  autogluon/tabular/models/tabular_nn/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
166
  autogluon/tabular/models/tabular_nn/compilers/native.py,sha256=W8d8cqBj7U-KVhfGK3hdtGj8JJm3lXr_SecU0615Gbs,1330
@@ -159,18 +169,18 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
159
169
  autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
160
170
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
161
171
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=TGVMv_ClKh0iYVVCqgd19DE-1fXk_VODpsXIMvzI3Sw,42978
172
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=mKegEc28W6aczYHoECx6LFiUDgkTnKpsmx6IuN5mFSQ,43001
163
173
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
164
174
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
165
175
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
166
176
  autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=2B5SrSN5nlCUGSsn2hrZNM5m4FswDKRxs_08CVB42js,35759
167
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=ypXqtxdt1qH6la1hcq-BJ0dzQBNtgKY-BjXmIWxPjCg,5237
177
+ autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=_-0WJrDW_7ZSwP2Iy20yUBRp6ay9MFLfQrndWnzrxlQ,5755
168
178
  autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=tttzR5EtYcFa6sIrUG9wyegdYmYE5DPK_CiLF1-L3c8,2875
169
179
  autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
170
180
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
171
181
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
172
182
  autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
173
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=tKVLvBnuTbDaFwBRVDZ5ADo4PjBF2FDR93Ib86WYTMM,15630
183
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=svUb6xyP4Gy2Kc5UsEifbDWNWXZKI08nhcdYTYVffoA,15779
174
184
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
175
185
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
176
186
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
@@ -179,27 +189,27 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
179
189
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
180
190
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
181
191
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
182
- autogluon/tabular/predictor/predictor.py,sha256=fjw7CQALXZ7AR18ryLm4xWwDzRBeUnrmNubPS8U_pmQ,361223
192
+ autogluon/tabular/predictor/predictor.py,sha256=jkCoQNfZtAzvJURvUdujA7tWFyCcaClsA1SWKyrdZ60,362819
183
193
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
184
- autogluon/tabular/registry/_ag_model_registry.py,sha256=2Zx5qxXvOdXIbL1FKslNh2M_JM2YG_7GvsCMFF11wDY,1578
194
+ autogluon/tabular/registry/_ag_model_registry.py,sha256=MKIum1LWnHtGyIhvJZp1V41CbwP0AWQIpsLWWFcr4U4,1704
185
195
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
186
196
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
187
- autogluon/tabular/testing/fit_helper.py,sha256=pj3P0ENMDhr04laxsLL0_IDX-8msMFo9Wn5XSLFCaqI,21092
197
+ autogluon/tabular/testing/fit_helper.py,sha256=BuG0jUK4KGguXi7xXFhvBPKjdiUihSbvbchWXsAeIbU,22463
188
198
  autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
189
199
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
190
200
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
191
- autogluon/tabular/trainer/abstract_trainer.py,sha256=9FiBqOV2h8era6KfydFSqhTlh7RnHkvlvzqsZuij7nE,232527
192
- autogluon/tabular/trainer/auto_trainer.py,sha256=ZQgQKFT1iHzzun5o5ojdq5pSQmr9ctTkNhe2r9OPOr0,8731
201
+ autogluon/tabular/trainer/abstract_trainer.py,sha256=2gThCJ9kVLJ9s6Xjoj2w7iCziC075ry3osG5zqCEYO4,234536
202
+ autogluon/tabular/trainer/auto_trainer.py,sha256=uyz1Q_MqvcstcGFUmYaUdjcGGWp_1VnhiNq60GWIJEY,8895
193
203
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
194
204
  autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju1OWi7EJwHay4jjljqt_E0,16546
195
205
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
196
206
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
197
207
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
198
- autogluon_tabular-1.4.1b20251212.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
199
- autogluon_tabular-1.4.1b20251212.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
200
- autogluon_tabular-1.4.1b20251212.dist-info/METADATA,sha256=zz1d_XxR_rQbF0YVjfQfro0mV3xwJR1AqaEdf8tIYSY,17015
201
- autogluon_tabular-1.4.1b20251212.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
202
- autogluon_tabular-1.4.1b20251212.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
203
- autogluon_tabular-1.4.1b20251212.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
204
- autogluon_tabular-1.4.1b20251212.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
205
- autogluon_tabular-1.4.1b20251212.dist-info/RECORD,,
208
+ autogluon_tabular-1.5.0b20251220.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
209
+ autogluon_tabular-1.5.0b20251220.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
210
+ autogluon_tabular-1.5.0b20251220.dist-info/METADATA,sha256=XHpYS4FmjGNYRcA6Si5m2vC_bwbkxuYa3g_8cxP1mV8,17054
211
+ autogluon_tabular-1.5.0b20251220.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
212
+ autogluon_tabular-1.5.0b20251220.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
213
+ autogluon_tabular-1.5.0b20251220.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
214
+ autogluon_tabular-1.5.0b20251220.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
215
+ autogluon_tabular-1.5.0b20251220.dist-info/RECORD,,