autogluon.tabular 1.4.1b20251014__py3-none-any.whl → 1.5.0b20251222__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/configs/hyperparameter_configs.py +4 -0
- autogluon/tabular/configs/presets_configs.py +39 -2
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +2 -44
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +2 -0
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +2 -0
- autogluon/tabular/learner/default_learner.py +1 -0
- autogluon/tabular/models/__init__.py +3 -1
- autogluon/tabular/models/abstract/__init__.py +0 -0
- autogluon/tabular/models/abstract/abstract_torch_model.py +148 -0
- autogluon/tabular/models/catboost/catboost_model.py +2 -5
- autogluon/tabular/models/ebm/ebm_model.py +2 -6
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +9 -3
- autogluon/tabular/models/lgb/lgb_model.py +60 -17
- autogluon/tabular/models/lgb/lgb_utils.py +2 -2
- autogluon/tabular/models/lr/lr_model.py +2 -4
- autogluon/tabular/models/lr/lr_preprocessing_utils.py +6 -7
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +14 -1
- autogluon/tabular/models/mitra/mitra_model.py +55 -29
- autogluon/tabular/models/realmlp/realmlp_model.py +8 -5
- autogluon/tabular/models/rf/rf_model.py +6 -8
- autogluon/tabular/models/tabdpt/__init__.py +0 -0
- autogluon/tabular/models/tabdpt/tabdpt_model.py +253 -0
- autogluon/tabular/models/tabicl/tabicl_model.py +15 -5
- autogluon/tabular/models/tabm/tabm_model.py +25 -8
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +7 -5
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +451 -0
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +87 -12
- autogluon/tabular/models/tabprep/__init__.py +0 -0
- autogluon/tabular/models/tabprep/prep_lgb_model.py +21 -0
- autogluon/tabular/models/tabprep/prep_mixin.py +220 -0
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -6
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +12 -4
- autogluon/tabular/models/xgboost/xgboost_model.py +3 -4
- autogluon/tabular/predictor/predictor.py +50 -20
- autogluon/tabular/registry/_ag_model_registry.py +8 -2
- autogluon/tabular/testing/fit_helper.py +61 -0
- autogluon/tabular/trainer/abstract_trainer.py +45 -9
- autogluon/tabular/trainer/auto_trainer.py +5 -0
- autogluon/tabular/version.py +1 -1
- autogluon.tabular-1.5.0b20251222-py3.11-nspkg.pth +1 -0
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/METADATA +97 -87
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/RECORD +48 -38
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/WHEEL +1 -1
- autogluon.tabular-1.4.1b20251014-py3.9-nspkg.pth +0 -1
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info/licenses}/LICENSE +0 -0
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info/licenses}/NOTICE +0 -0
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/zip-safe +0 -0
|
@@ -27,7 +27,7 @@ from autogluon.core.calibrate.conformity_score import compute_conformity_score
|
|
|
27
27
|
from autogluon.core.calibrate.temperature_scaling import apply_temperature_scaling, tune_temperature_scaling
|
|
28
28
|
from autogluon.core.callbacks import AbstractCallback
|
|
29
29
|
from autogluon.core.constants import BINARY, MULTICLASS, QUANTILE, REFIT_FULL_NAME, REGRESSION, SOFTCLASS
|
|
30
|
-
from autogluon.core.data.label_cleaner import LabelCleanerMulticlassToBinary
|
|
30
|
+
from autogluon.core.data.label_cleaner import LabelCleanerMulticlassToBinary, LabelCleaner
|
|
31
31
|
from autogluon.core.metrics import Scorer, compute_metric, get_metric
|
|
32
32
|
from autogluon.core.models import (
|
|
33
33
|
AbstractModel,
|
|
@@ -530,7 +530,7 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
|
530
530
|
self.save()
|
|
531
531
|
return model_names_fit
|
|
532
532
|
|
|
533
|
-
def _fit_setup(self, time_limit: float | None = None, callbacks: list[AbstractCallback] | None = None):
|
|
533
|
+
def _fit_setup(self, time_limit: float | None = None, callbacks: list[AbstractCallback | list | tuple] | None = None):
|
|
534
534
|
"""
|
|
535
535
|
Prepare the trainer state at the start of / prior to a fit call.
|
|
536
536
|
Should be paired with a `self._fit_cleanup()` at the conclusion of the fit call.
|
|
@@ -539,15 +539,45 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
|
539
539
|
self._time_train_start_last = self._time_train_start
|
|
540
540
|
self._time_limit = time_limit
|
|
541
541
|
self.reset_callbacks()
|
|
542
|
+
callbacks_new = []
|
|
542
543
|
if callbacks is not None:
|
|
543
544
|
assert isinstance(callbacks, list), f"`callbacks` must be a list. Found invalid type: `{type(callbacks)}`."
|
|
544
545
|
for callback in callbacks:
|
|
545
|
-
|
|
546
|
-
callback,
|
|
547
|
-
|
|
546
|
+
if isinstance(callback, (list, tuple)):
|
|
547
|
+
assert len(callback) == 2, f"Callback must either be an initialized object or a tuple/list of length 2, found: {callback}"
|
|
548
|
+
callback_cls = callback[0]
|
|
549
|
+
if isinstance(callback_cls, str):
|
|
550
|
+
from autogluon.core.callbacks._early_stopping_count_callback import EarlyStoppingCountCallback
|
|
551
|
+
from autogluon.core.callbacks._early_stopping_callback import EarlyStoppingCallback
|
|
552
|
+
from autogluon.core.callbacks._early_stopping_ensemble_callback import EarlyStoppingEnsembleCallback
|
|
553
|
+
|
|
554
|
+
_callback_cls_lst = [
|
|
555
|
+
EarlyStoppingCallback,
|
|
556
|
+
EarlyStoppingCountCallback,
|
|
557
|
+
EarlyStoppingEnsembleCallback,
|
|
558
|
+
]
|
|
559
|
+
|
|
560
|
+
_callback_cls_name_map = {
|
|
561
|
+
c.__name__: c for c in _callback_cls_lst
|
|
562
|
+
}
|
|
563
|
+
|
|
564
|
+
assert callback_cls in _callback_cls_name_map.keys(), (
|
|
565
|
+
f"Unknown callback class: {callback_cls}. "
|
|
566
|
+
f"Valid classes: {list(_callback_cls_name_map.keys())}"
|
|
567
|
+
)
|
|
568
|
+
callback_cls = _callback_cls_name_map[callback_cls]
|
|
569
|
+
|
|
570
|
+
callback_kwargs = callback[1]
|
|
571
|
+
assert isinstance(callback_kwargs, dict), f"Callback kwargs must be a dictionary, found: {callback_kwargs}"
|
|
572
|
+
callback = callback_cls(**callback_kwargs)
|
|
573
|
+
else:
|
|
574
|
+
assert isinstance(
|
|
575
|
+
callback, AbstractCallback
|
|
576
|
+
), f"Elements in `callbacks` must be of type AbstractCallback. Found invalid type: `{type(callback)}`."
|
|
577
|
+
callbacks_new.append(callback)
|
|
548
578
|
else:
|
|
549
|
-
|
|
550
|
-
self.callbacks =
|
|
579
|
+
callbacks_new = []
|
|
580
|
+
self.callbacks = callbacks_new
|
|
551
581
|
|
|
552
582
|
def _fit_cleanup(self):
|
|
553
583
|
"""
|
|
@@ -2493,6 +2523,7 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
|
2493
2523
|
errors_ignore: list | None = None,
|
|
2494
2524
|
errors_raise: list | None = None,
|
|
2495
2525
|
is_ray_worker: bool = False,
|
|
2526
|
+
label_cleaner: None | LabelCleaner = None,
|
|
2496
2527
|
**kwargs,
|
|
2497
2528
|
) -> list[str]:
|
|
2498
2529
|
"""
|
|
@@ -2527,7 +2558,8 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
|
2527
2558
|
return []
|
|
2528
2559
|
|
|
2529
2560
|
model_fit_kwargs = self._get_model_fit_kwargs(
|
|
2530
|
-
X=X, X_val=X_val, time_limit=time_limit, k_fold=k_fold, fit_kwargs=fit_kwargs,
|
|
2561
|
+
X=X, X_val=X_val, time_limit=time_limit, k_fold=k_fold, fit_kwargs=fit_kwargs,
|
|
2562
|
+
ens_sample_weight=kwargs.get("ens_sample_weight", None), label_cleaner=label_cleaner,
|
|
2531
2563
|
)
|
|
2532
2564
|
exception = None
|
|
2533
2565
|
if hyperparameter_tune_kwargs:
|
|
@@ -4294,7 +4326,8 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
|
4294
4326
|
return distilled_model_names
|
|
4295
4327
|
|
|
4296
4328
|
def _get_model_fit_kwargs(
|
|
4297
|
-
self, X: pd.DataFrame, X_val: pd.DataFrame, time_limit: float, k_fold: int,
|
|
4329
|
+
self, X: pd.DataFrame, X_val: pd.DataFrame, time_limit: float, k_fold: int,
|
|
4330
|
+
fit_kwargs: dict, ens_sample_weight: list | None = None, label_cleaner: None | LabelCleaner = None
|
|
4298
4331
|
) -> dict:
|
|
4299
4332
|
# Returns kwargs to be passed to AbstractModel's fit function
|
|
4300
4333
|
if fit_kwargs is None:
|
|
@@ -4316,6 +4349,9 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
|
4316
4349
|
if k_fold == self.k_fold: # don't do this on refit full
|
|
4317
4350
|
model_fit_kwargs["groups"] = self._groups
|
|
4318
4351
|
|
|
4352
|
+
if label_cleaner is not None:
|
|
4353
|
+
model_fit_kwargs["label_cleaner"] = label_cleaner
|
|
4354
|
+
|
|
4319
4355
|
# FIXME: Sample weight `extract_column` is a hack, have to compute feature_metadata here because sample weight column could be in X upstream, extract sample weight column upstream instead.
|
|
4320
4356
|
if "feature_metadata" not in model_fit_kwargs:
|
|
4321
4357
|
raise AssertionError(f"Missing expected parameter 'feature_metadata'.")
|
|
@@ -59,6 +59,7 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
59
59
|
use_bag_holdout=False,
|
|
60
60
|
groups=None,
|
|
61
61
|
callbacks: list[callable] = None,
|
|
62
|
+
label_cleaner=None,
|
|
62
63
|
**kwargs,
|
|
63
64
|
):
|
|
64
65
|
for key in kwargs:
|
|
@@ -112,6 +113,7 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
112
113
|
extra_log_str = ""
|
|
113
114
|
display_all = (n_configs < 20) or (self.verbosity >= 3)
|
|
114
115
|
if not display_all:
|
|
116
|
+
# FIXME: This isn't correct
|
|
115
117
|
extra_log_str = (
|
|
116
118
|
f"Large model count detected ({n_configs} configs) ... " f"Only displaying the first 3 models of each family. To see all, set `verbosity=3`.\n"
|
|
117
119
|
)
|
|
@@ -132,6 +134,9 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
|
132
134
|
log_str += "}"
|
|
133
135
|
logger.log(20, log_str)
|
|
134
136
|
|
|
137
|
+
if label_cleaner is not None:
|
|
138
|
+
core_kwargs["label_cleaner"] = label_cleaner
|
|
139
|
+
|
|
135
140
|
self._train_multi_and_ensemble(
|
|
136
141
|
X=X,
|
|
137
142
|
y=y,
|
autogluon/tabular/version.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
import sys, types, os;p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = __import__('importlib.util');__import__('importlib.machinery');m = sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
|
{autogluon.tabular-1.4.1b20251014.dist-info → autogluon_tabular-1.5.0b20251222.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.0b20251222
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -24,121 +23,131 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
24
23
|
Classifier: Operating System :: POSIX
|
|
25
24
|
Classifier: Operating System :: Unix
|
|
26
25
|
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
28
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
29
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
30
28
|
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
37
|
-
License-File:
|
|
38
|
-
License-File:
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
39
38
|
Requires-Dist: numpy<2.4.0,>=1.25.0
|
|
40
39
|
Requires-Dist: scipy<1.17,>=1.5.4
|
|
41
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
42
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
43
42
|
Requires-Dist: networkx<4,>=3.0
|
|
44
|
-
Requires-Dist: autogluon.core==1.
|
|
45
|
-
Requires-Dist: autogluon.features==1.
|
|
46
|
-
Provides-Extra:
|
|
47
|
-
Requires-Dist:
|
|
48
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251014; extra == "all"
|
|
49
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
50
|
-
Requires-Dist: loguru; extra == "all"
|
|
51
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
52
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
53
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
|
54
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
55
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
56
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "all"
|
|
57
|
-
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
|
58
|
-
Requires-Dist: einx; extra == "all"
|
|
59
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
60
|
-
Requires-Dist: transformers; extra == "all"
|
|
61
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.0b20251222
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.0b20251222
|
|
45
|
+
Provides-Extra: lightgbm
|
|
46
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
62
47
|
Provides-Extra: catboost
|
|
63
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
|
64
48
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
|
49
|
+
Provides-Extra: xgboost
|
|
50
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "xgboost"
|
|
51
|
+
Provides-Extra: realmlp
|
|
52
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "realmlp"
|
|
53
|
+
Provides-Extra: interpret
|
|
54
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
65
55
|
Provides-Extra: fastai
|
|
66
56
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
67
|
-
Requires-Dist: torch<2.
|
|
57
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
68
58
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
59
|
+
Provides-Extra: tabm
|
|
60
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
61
|
+
Provides-Extra: tabpfn
|
|
62
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabpfn"
|
|
63
|
+
Provides-Extra: tabdpt
|
|
64
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabdpt"
|
|
65
|
+
Provides-Extra: tabpfnmix
|
|
66
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
|
|
67
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
|
|
68
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
|
|
76
69
|
Provides-Extra: mitra
|
|
77
70
|
Requires-Dist: loguru; extra == "mitra"
|
|
78
71
|
Requires-Dist: einx; extra == "mitra"
|
|
79
72
|
Requires-Dist: omegaconf; extra == "mitra"
|
|
80
|
-
Requires-Dist: torch<2.
|
|
73
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "mitra"
|
|
81
74
|
Requires-Dist: transformers; extra == "mitra"
|
|
82
|
-
Requires-Dist:
|
|
75
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
|
|
83
76
|
Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
77
|
+
Provides-Extra: tabicl
|
|
78
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
84
79
|
Provides-Extra: ray
|
|
85
|
-
Requires-Dist: autogluon.core[all]==1.
|
|
86
|
-
Provides-Extra: realmlp
|
|
87
|
-
Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.0b20251222; extra == "ray"
|
|
88
81
|
Provides-Extra: skex
|
|
89
|
-
Requires-Dist: scikit-learn-intelex<2025.
|
|
82
|
+
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
83
|
+
Provides-Extra: imodels
|
|
84
|
+
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
90
85
|
Provides-Extra: skl2onnx
|
|
91
|
-
Requires-Dist: skl2onnx<1.
|
|
92
|
-
Requires-Dist:
|
|
93
|
-
Requires-Dist:
|
|
94
|
-
Requires-Dist:
|
|
95
|
-
Requires-Dist:
|
|
86
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "skl2onnx"
|
|
87
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
|
|
88
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
|
|
89
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
90
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
91
|
+
Provides-Extra: all
|
|
92
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
93
|
+
Requires-Dist: transformers; extra == "all"
|
|
94
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
95
|
+
Requires-Dist: einx; extra == "all"
|
|
96
|
+
Requires-Dist: autogluon.core[all]==1.5.0b20251222; extra == "all"
|
|
97
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
98
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
100
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
101
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
102
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
103
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
104
|
+
Requires-Dist: loguru; extra == "all"
|
|
96
105
|
Provides-Extra: tabarena
|
|
97
|
-
Requires-Dist:
|
|
98
|
-
Requires-Dist:
|
|
106
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
107
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
108
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
109
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
99
110
|
Requires-Dist: transformers; extra == "tabarena"
|
|
100
111
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
112
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
101
113
|
Requires-Dist: einx; extra == "tabarena"
|
|
102
|
-
Requires-Dist:
|
|
114
|
+
Requires-Dist: autogluon.core[all]==1.5.0b20251222; extra == "tabarena"
|
|
115
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
116
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
117
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
118
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
119
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
120
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
121
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
103
122
|
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
104
123
|
Requires-Dist: loguru; extra == "tabarena"
|
|
105
|
-
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
106
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
107
|
-
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
108
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251014; extra == "tabarena"
|
|
109
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
110
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
111
|
-
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
112
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
|
|
113
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
114
|
-
Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
|
|
115
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
|
|
116
|
-
Provides-Extra: tabicl
|
|
117
|
-
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
|
118
|
-
Provides-Extra: tabm
|
|
119
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
|
|
120
|
-
Provides-Extra: tabpfn
|
|
121
|
-
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
|
|
122
|
-
Provides-Extra: tabpfnmix
|
|
123
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "tabpfnmix"
|
|
124
|
-
Requires-Dist: huggingface-hub[torch]; extra == "tabpfnmix"
|
|
125
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
|
|
126
124
|
Provides-Extra: tests
|
|
127
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
128
|
-
Requires-Dist:
|
|
129
|
-
Requires-Dist:
|
|
130
|
-
Requires-Dist:
|
|
131
|
-
Requires-Dist:
|
|
132
|
-
Requires-Dist:
|
|
126
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|
|
127
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tests"
|
|
128
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tests"
|
|
129
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tests"
|
|
130
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tests"
|
|
131
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
|
|
133
132
|
Requires-Dist: einops<0.9,>=0.7; extra == "tests"
|
|
134
133
|
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
|
|
135
|
-
Requires-Dist: skl2onnx<1.
|
|
136
|
-
Requires-Dist:
|
|
137
|
-
Requires-Dist:
|
|
138
|
-
Requires-Dist:
|
|
139
|
-
Requires-Dist:
|
|
140
|
-
|
|
141
|
-
|
|
134
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "tests"
|
|
135
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "tests"
|
|
136
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
|
|
137
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "tests"
|
|
138
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
|
|
139
|
+
Dynamic: author
|
|
140
|
+
Dynamic: classifier
|
|
141
|
+
Dynamic: description
|
|
142
|
+
Dynamic: description-content-type
|
|
143
|
+
Dynamic: home-page
|
|
144
|
+
Dynamic: license
|
|
145
|
+
Dynamic: license-file
|
|
146
|
+
Dynamic: project-url
|
|
147
|
+
Dynamic: provides-extra
|
|
148
|
+
Dynamic: requires-dist
|
|
149
|
+
Dynamic: requires-python
|
|
150
|
+
Dynamic: summary
|
|
142
151
|
|
|
143
152
|
|
|
144
153
|
|
|
@@ -149,7 +158,7 @@ Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
|
|
|
149
158
|
|
|
150
159
|
[](https://github.com/autogluon/autogluon/releases)
|
|
151
160
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
152
|
-
[](https://pypi.org/project/autogluon/)
|
|
153
162
|
[](https://pepy.tech/project/autogluon)
|
|
154
163
|
[](./LICENSE)
|
|
155
164
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -166,7 +175,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
166
175
|
|
|
167
176
|
## 💾 Installation
|
|
168
177
|
|
|
169
|
-
AutoGluon is supported on Python 3.
|
|
178
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
170
179
|
|
|
171
180
|
You can install AutoGluon with:
|
|
172
181
|
|
|
@@ -189,8 +198,8 @@ predictions = predictor.predict("test.csv")
|
|
|
189
198
|
| AutoGluon Task | Quickstart | API |
|
|
190
199
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
191
200
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
192
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
193
201
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
202
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
194
203
|
|
|
195
204
|
## :mag: Resources
|
|
196
205
|
|
|
@@ -213,7 +222,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
213
222
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
214
223
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
215
224
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
216
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
225
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
226
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
227
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
228
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
217
229
|
|
|
218
230
|
### Articles
|
|
219
231
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -239,5 +251,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
239
251
|
## :classical_building: License
|
|
240
252
|
|
|
241
253
|
This library is licensed under the Apache 2.0 License.
|
|
242
|
-
|
|
243
|
-
|