autogluon.tabular 1.4.1b20250916__py3-none-any.whl → 1.4.1b20251212__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/models/catboost/catboost_model.py +3 -4
- autogluon/tabular/models/ebm/ebm_model.py +2 -6
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +4 -2
- autogluon/tabular/models/knn/knn_model.py +6 -2
- autogluon/tabular/models/lgb/lgb_model.py +56 -24
- autogluon/tabular/models/lr/lr_model.py +6 -4
- autogluon/tabular/models/lr/lr_preprocessing_utils.py +6 -7
- autogluon/tabular/models/mitra/mitra_model.py +2 -7
- autogluon/tabular/models/realmlp/realmlp_model.py +1 -4
- autogluon/tabular/models/rf/rf_model.py +10 -8
- autogluon/tabular/models/tabicl/tabicl_model.py +1 -4
- autogluon/tabular/models/tabm/tabm_model.py +76 -3
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +7 -5
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +1 -4
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -5
- autogluon/tabular/models/xgboost/xgboost_model.py +8 -5
- autogluon/tabular/predictor/predictor.py +3 -2
- autogluon/tabular/testing/fit_helper.py +28 -0
- autogluon/tabular/version.py +1 -1
- autogluon.tabular-1.4.1b20251212-py3.11-nspkg.pth +1 -0
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/METADATA +89 -80
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/RECORD +28 -28
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/WHEEL +1 -1
- autogluon.tabular-1.4.1b20250916-py3.9-nspkg.pth +0 -1
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info/licenses}/LICENSE +0 -0
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info/licenses}/NOTICE +0 -0
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/zip-safe +0 -0
|
@@ -32,6 +32,7 @@ class XGBoostModel(AbstractModel):
|
|
|
32
32
|
ag_key = "XGB"
|
|
33
33
|
ag_name = "XGBoost"
|
|
34
34
|
ag_priority = 40
|
|
35
|
+
seed_name = "seed"
|
|
35
36
|
|
|
36
37
|
def __init__(self, **kwargs):
|
|
37
38
|
super().__init__(**kwargs)
|
|
@@ -75,15 +76,11 @@ class XGBoostModel(AbstractModel):
|
|
|
75
76
|
|
|
76
77
|
return X
|
|
77
78
|
|
|
78
|
-
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
79
|
-
return hyperparameters.get("seed", "N/A")
|
|
80
|
-
|
|
81
79
|
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=None, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
|
|
82
80
|
# TODO: utilize sample_weight_val in early-stopping if provided
|
|
83
81
|
start_time = time.time()
|
|
84
82
|
ag_params = self._get_ag_params()
|
|
85
83
|
params = self._get_model_params()
|
|
86
|
-
params["seed"] = self.random_seed
|
|
87
84
|
generate_curves = ag_params.get("generate_curves", False)
|
|
88
85
|
|
|
89
86
|
if generate_curves:
|
|
@@ -186,12 +183,18 @@ class XGBoostModel(AbstractModel):
|
|
|
186
183
|
from xgboost import XGBClassifier, XGBRegressor
|
|
187
184
|
|
|
188
185
|
model_type = XGBClassifier if self.problem_type in PROBLEM_TYPES_CLASSIFICATION else XGBRegressor
|
|
189
|
-
|
|
186
|
+
|
|
190
187
|
import warnings
|
|
191
188
|
|
|
192
189
|
with warnings.catch_warnings():
|
|
193
190
|
# FIXME: v1.1: Upgrade XGBoost to 2.0.1+ to avoid deprecation warnings from Pandas 2.1+ during XGBoost fit.
|
|
194
191
|
warnings.simplefilter(action="ignore", category=FutureWarning)
|
|
192
|
+
if params.get("device", "cpu") == "cuda:0":
|
|
193
|
+
# verbosity=0 to hide UserWarning: Falling back to prediction using DMatrix due to mismatched devices.
|
|
194
|
+
# TODO: Find a way to hide this warning without setting verbosity=0
|
|
195
|
+
# ref: https://github.com/dmlc/xgboost/issues/9791
|
|
196
|
+
params["verbosity"] = 0
|
|
197
|
+
self.model = model_type(**params)
|
|
195
198
|
self.model.fit(X=X, y=y, eval_set=eval_set, verbose=False, sample_weight=sample_weight)
|
|
196
199
|
|
|
197
200
|
if generate_curves:
|
|
@@ -20,6 +20,7 @@ from autogluon.common import FeatureMetadata, TabularDataset
|
|
|
20
20
|
from autogluon.common.loaders import load_json
|
|
21
21
|
from autogluon.common.savers import save_json
|
|
22
22
|
from autogluon.common.utils.file_utils import get_directory_size, get_directory_size_per_file
|
|
23
|
+
from autogluon.common.utils.resource_utils import ResourceManager, get_resource_manager
|
|
23
24
|
from autogluon.common.utils.hyperparameter_utils import get_hyperparameter_str_deprecation_msg, is_advanced_hyperparameter_format
|
|
24
25
|
from autogluon.common.utils.log_utils import add_log_to_file, set_logger_verbosity, warn_if_mlflow_autologging_is_enabled
|
|
25
26
|
from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
|
|
@@ -1091,7 +1092,8 @@ class TabularPredictor:
|
|
|
1091
1092
|
elif verbosity >= 4:
|
|
1092
1093
|
logger.log(20, f"Verbosity: {verbosity} (Maximum Logging)")
|
|
1093
1094
|
|
|
1094
|
-
|
|
1095
|
+
resource_manager: ResourceManager = get_resource_manager()
|
|
1096
|
+
include_gpu_count = resource_manager.get_gpu_count_torch() or verbosity >= 3
|
|
1095
1097
|
sys_msg = get_ag_system_info(path=self.path, include_gpu_count=include_gpu_count)
|
|
1096
1098
|
logger.log(20, sys_msg)
|
|
1097
1099
|
|
|
@@ -1630,7 +1632,6 @@ class TabularPredictor:
|
|
|
1630
1632
|
if _ds_ray is not None:
|
|
1631
1633
|
# Handle resources
|
|
1632
1634
|
# FIXME: what about distributed?
|
|
1633
|
-
from autogluon.common.utils.resource_utils import ResourceManager
|
|
1634
1635
|
|
|
1635
1636
|
total_resources = ag_fit_kwargs["core_kwargs"]["total_resources"]
|
|
1636
1637
|
|
|
@@ -175,6 +175,7 @@ class FitHelper:
|
|
|
175
175
|
use_test_for_val: bool = False,
|
|
176
176
|
raise_on_model_failure: bool | None = None,
|
|
177
177
|
deepcopy_fit_args: bool = True,
|
|
178
|
+
verify_model_seed: bool = False,
|
|
178
179
|
) -> TabularPredictor:
|
|
179
180
|
if compiler_configs is None:
|
|
180
181
|
compiler_configs = {}
|
|
@@ -269,6 +270,11 @@ class FitHelper:
|
|
|
269
270
|
assert not model_info["val_in_fit"], f"val data must not be present in refit model if `can_refit_full=True`. Maybe an exception occurred?"
|
|
270
271
|
else:
|
|
271
272
|
assert model_info["val_in_fit"], f"val data must be present in refit model if `can_refit_full=False`"
|
|
273
|
+
if verify_model_seed:
|
|
274
|
+
model_names = predictor.model_names()
|
|
275
|
+
for model_name in model_names:
|
|
276
|
+
model = predictor._trainer.load_model(model_name)
|
|
277
|
+
_verify_model_seed(model=model)
|
|
272
278
|
|
|
273
279
|
if predictor_info:
|
|
274
280
|
predictor.info()
|
|
@@ -339,6 +345,7 @@ class FitHelper:
|
|
|
339
345
|
require_known_problem_types: bool = True,
|
|
340
346
|
raise_on_model_failure: bool = True,
|
|
341
347
|
problem_types: list[str] | None = None,
|
|
348
|
+
verify_model_seed: bool = True,
|
|
342
349
|
**kwargs,
|
|
343
350
|
):
|
|
344
351
|
"""
|
|
@@ -355,12 +362,18 @@ class FitHelper:
|
|
|
355
362
|
problem_types: list[str], optional
|
|
356
363
|
If specified, checks the given problem_types.
|
|
357
364
|
If None, checks `model_cls.supported_problem_types()`
|
|
365
|
+
verify_model_seed: bool = True
|
|
358
366
|
**kwargs
|
|
359
367
|
|
|
360
368
|
Returns
|
|
361
369
|
-------
|
|
362
370
|
|
|
363
371
|
"""
|
|
372
|
+
if verify_model_seed and model_cls.seed_name is not None:
|
|
373
|
+
# verify that the seed logic works
|
|
374
|
+
model_hyperparameters = model_hyperparameters.copy()
|
|
375
|
+
model_hyperparameters[model_cls.seed_name] = 42
|
|
376
|
+
|
|
364
377
|
fit_args = dict(
|
|
365
378
|
hyperparameters={model_cls: model_hyperparameters},
|
|
366
379
|
)
|
|
@@ -429,6 +442,7 @@ class FitHelper:
|
|
|
429
442
|
refit_full=refit_full,
|
|
430
443
|
extra_metrics=_extra_metrics,
|
|
431
444
|
raise_on_model_failure=raise_on_model_failure,
|
|
445
|
+
verify_model_seed=verify_model_seed,
|
|
432
446
|
**kwargs,
|
|
433
447
|
)
|
|
434
448
|
|
|
@@ -460,6 +474,7 @@ class FitHelper:
|
|
|
460
474
|
refit_full=refit_full,
|
|
461
475
|
extra_metrics=_extra_metrics,
|
|
462
476
|
raise_on_model_failure=raise_on_model_failure,
|
|
477
|
+
verify_model_seed=verify_model_seed,
|
|
463
478
|
**kwargs,
|
|
464
479
|
)
|
|
465
480
|
|
|
@@ -476,3 +491,16 @@ def stacked_overfitting_assert(
|
|
|
476
491
|
if expected_stacked_overfitting_at_test is not None:
|
|
477
492
|
stacked_overfitting = check_stacked_overfitting_from_leaderboard(lb)
|
|
478
493
|
assert stacked_overfitting == expected_stacked_overfitting_at_test, "Expected stacked overfitting at test mismatch!"
|
|
494
|
+
|
|
495
|
+
|
|
496
|
+
def _verify_model_seed(model: AbstractModel):
|
|
497
|
+
assert model.random_seed is None or isinstance(model.random_seed, int)
|
|
498
|
+
if model.seed_name is not None:
|
|
499
|
+
if model.seed_name in model._user_params:
|
|
500
|
+
assert model.random_seed == model._user_params[model.seed_name]
|
|
501
|
+
assert model.seed_name in model.params
|
|
502
|
+
assert model.random_seed == model.params[model.seed_name]
|
|
503
|
+
if isinstance(model, BaggedEnsembleModel):
|
|
504
|
+
for child in model.models:
|
|
505
|
+
child = model.load_child(child)
|
|
506
|
+
_verify_model_seed(child)
|
autogluon/tabular/version.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
import sys, types, os;p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = __import__('importlib.util');__import__('importlib.machinery');m = sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
|
{autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1b20251212
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -24,121 +23,130 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
24
23
|
Classifier: Operating System :: POSIX
|
|
25
24
|
Classifier: Operating System :: Unix
|
|
26
25
|
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
28
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
29
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
30
28
|
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
37
|
-
License-File:
|
|
38
|
-
License-File:
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
39
38
|
Requires-Dist: numpy<2.4.0,>=1.25.0
|
|
40
39
|
Requires-Dist: scipy<1.17,>=1.5.4
|
|
41
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
42
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
43
42
|
Requires-Dist: networkx<4,>=3.0
|
|
44
|
-
Requires-Dist: autogluon.core==1.4.
|
|
45
|
-
Requires-Dist: autogluon.features==1.4.
|
|
46
|
-
Provides-Extra:
|
|
47
|
-
Requires-Dist:
|
|
48
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
49
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
|
50
|
-
Requires-Dist: transformers; extra == "all"
|
|
51
|
-
Requires-Dist: loguru; extra == "all"
|
|
52
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "all"
|
|
53
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
54
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
55
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20250916; extra == "all"
|
|
56
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
57
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
58
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
59
|
-
Requires-Dist: einx; extra == "all"
|
|
60
|
-
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
|
61
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
|
|
43
|
+
Requires-Dist: autogluon.core==1.4.1b20251212
|
|
44
|
+
Requires-Dist: autogluon.features==1.4.1b20251212
|
|
45
|
+
Provides-Extra: lightgbm
|
|
46
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
62
47
|
Provides-Extra: catboost
|
|
63
48
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
|
64
49
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
|
50
|
+
Provides-Extra: xgboost
|
|
51
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
|
|
52
|
+
Provides-Extra: realmlp
|
|
53
|
+
Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
|
|
54
|
+
Provides-Extra: interpret
|
|
55
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
65
56
|
Provides-Extra: fastai
|
|
66
57
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
67
|
-
Requires-Dist: torch<2.
|
|
58
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
68
59
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
Requires-Dist:
|
|
60
|
+
Provides-Extra: tabm
|
|
61
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
62
|
+
Provides-Extra: tabpfn
|
|
63
|
+
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
|
|
64
|
+
Provides-Extra: tabpfnmix
|
|
65
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
|
|
66
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
|
|
67
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
|
|
76
68
|
Provides-Extra: mitra
|
|
77
69
|
Requires-Dist: loguru; extra == "mitra"
|
|
78
70
|
Requires-Dist: einx; extra == "mitra"
|
|
79
71
|
Requires-Dist: omegaconf; extra == "mitra"
|
|
80
|
-
Requires-Dist: torch<2.
|
|
72
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "mitra"
|
|
81
73
|
Requires-Dist: transformers; extra == "mitra"
|
|
82
|
-
Requires-Dist:
|
|
74
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
|
|
83
75
|
Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
76
|
+
Provides-Extra: tabicl
|
|
77
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
|
84
78
|
Provides-Extra: ray
|
|
85
|
-
Requires-Dist: autogluon.core[all]==1.4.
|
|
86
|
-
Provides-Extra: realmlp
|
|
87
|
-
Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
|
|
79
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251212; extra == "ray"
|
|
88
80
|
Provides-Extra: skex
|
|
89
81
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
|
82
|
+
Provides-Extra: imodels
|
|
83
|
+
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
90
84
|
Provides-Extra: skl2onnx
|
|
91
|
-
Requires-Dist: skl2onnx<1.
|
|
92
|
-
Requires-Dist:
|
|
93
|
-
Requires-Dist:
|
|
94
|
-
Requires-Dist:
|
|
95
|
-
Requires-Dist:
|
|
85
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "skl2onnx"
|
|
86
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
|
|
87
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
|
|
88
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
89
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
90
|
+
Provides-Extra: all
|
|
91
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
92
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
93
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
94
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
95
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
96
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
97
|
+
Requires-Dist: loguru; extra == "all"
|
|
98
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251212; extra == "all"
|
|
99
|
+
Requires-Dist: transformers; extra == "all"
|
|
100
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
101
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
102
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
103
|
+
Requires-Dist: einx; extra == "all"
|
|
104
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
96
105
|
Provides-Extra: tabarena
|
|
106
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
107
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
108
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
109
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
97
110
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
98
|
-
Requires-Dist: torch<2.
|
|
111
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
112
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
113
|
+
Requires-Dist: loguru; extra == "tabarena"
|
|
114
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251212; extra == "tabarena"
|
|
99
115
|
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
100
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
101
|
-
Requires-Dist: einx; extra == "tabarena"
|
|
102
116
|
Requires-Dist: transformers; extra == "tabarena"
|
|
103
117
|
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
104
|
-
Requires-Dist:
|
|
118
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
105
119
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
120
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
106
121
|
Requires-Dist: omegaconf; extra == "tabarena"
|
|
107
|
-
Requires-Dist:
|
|
108
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
122
|
+
Requires-Dist: einx; extra == "tabarena"
|
|
109
123
|
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
110
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
111
|
-
Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
|
|
112
|
-
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
113
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
114
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
115
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
|
|
116
|
-
Provides-Extra: tabicl
|
|
117
|
-
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
|
118
|
-
Provides-Extra: tabm
|
|
119
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
|
|
120
|
-
Provides-Extra: tabpfn
|
|
121
|
-
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
|
|
122
|
-
Provides-Extra: tabpfnmix
|
|
123
|
-
Requires-Dist: torch<2.8,>=2.6; extra == "tabpfnmix"
|
|
124
|
-
Requires-Dist: huggingface-hub[torch]; extra == "tabpfnmix"
|
|
125
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
|
|
126
124
|
Provides-Extra: tests
|
|
127
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
128
126
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
|
|
129
127
|
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
|
|
130
128
|
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
|
|
131
|
-
Requires-Dist: torch<2.
|
|
132
|
-
Requires-Dist:
|
|
129
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tests"
|
|
130
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
|
|
133
131
|
Requires-Dist: einops<0.9,>=0.7; extra == "tests"
|
|
134
132
|
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
|
|
135
|
-
Requires-Dist: skl2onnx<1.
|
|
136
|
-
Requires-Dist:
|
|
137
|
-
Requires-Dist:
|
|
138
|
-
Requires-Dist:
|
|
139
|
-
Requires-Dist:
|
|
140
|
-
|
|
141
|
-
|
|
133
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "tests"
|
|
134
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "tests"
|
|
135
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
|
|
136
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "tests"
|
|
137
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
|
|
138
|
+
Dynamic: author
|
|
139
|
+
Dynamic: classifier
|
|
140
|
+
Dynamic: description
|
|
141
|
+
Dynamic: description-content-type
|
|
142
|
+
Dynamic: home-page
|
|
143
|
+
Dynamic: license
|
|
144
|
+
Dynamic: license-file
|
|
145
|
+
Dynamic: project-url
|
|
146
|
+
Dynamic: provides-extra
|
|
147
|
+
Dynamic: requires-dist
|
|
148
|
+
Dynamic: requires-python
|
|
149
|
+
Dynamic: summary
|
|
142
150
|
|
|
143
151
|
|
|
144
152
|
|
|
@@ -149,7 +157,7 @@ Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
|
|
|
149
157
|
|
|
150
158
|
[](https://github.com/autogluon/autogluon/releases)
|
|
151
159
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
152
|
-
[](https://pypi.org/project/autogluon/)
|
|
153
161
|
[](https://pepy.tech/project/autogluon)
|
|
154
162
|
[](./LICENSE)
|
|
155
163
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -166,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
166
174
|
|
|
167
175
|
## 💾 Installation
|
|
168
176
|
|
|
169
|
-
AutoGluon is supported on Python 3.
|
|
177
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
170
178
|
|
|
171
179
|
You can install AutoGluon with:
|
|
172
180
|
|
|
@@ -189,8 +197,8 @@ predictions = predictor.predict("test.csv")
|
|
|
189
197
|
| AutoGluon Task | Quickstart | API |
|
|
190
198
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
191
199
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
192
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
193
200
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
201
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
194
202
|
|
|
195
203
|
## :mag: Resources
|
|
196
204
|
|
|
@@ -213,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
213
221
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
214
222
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
215
223
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
216
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
224
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
225
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
226
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
227
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
217
228
|
|
|
218
229
|
### Articles
|
|
219
230
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -239,5 +250,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
239
250
|
## :classical_building: License
|
|
240
251
|
|
|
241
252
|
This library is licensed under the Apache 2.0 License.
|
|
242
|
-
|
|
243
|
-
|
{autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/RECORD
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
autogluon.tabular-1.4.
|
|
1
|
+
autogluon.tabular-1.4.1b20251212-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
|
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
|
3
|
-
autogluon/tabular/version.py,sha256=
|
|
3
|
+
autogluon/tabular/version.py,sha256=0mbAiIGq_EhDp9cHb-TFRx9KRI5rLcXhrs02x0148D0,91
|
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
|
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
|
@@ -27,14 +27,14 @@ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB
|
|
|
27
27
|
autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
|
|
28
28
|
autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
29
29
|
autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
|
|
30
|
-
autogluon/tabular/models/catboost/catboost_model.py,sha256=
|
|
30
|
+
autogluon/tabular/models/catboost/catboost_model.py,sha256=tAT_eklRJDARJsbS72-Nn8PxLmKgIvffzjjrTI1XMXM,18041
|
|
31
31
|
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
|
|
32
32
|
autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
|
|
33
33
|
autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
34
|
autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
|
|
35
35
|
autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
|
|
36
36
|
autogluon/tabular/models/ebm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
37
|
-
autogluon/tabular/models/ebm/ebm_model.py,sha256=
|
|
37
|
+
autogluon/tabular/models/ebm/ebm_model.py,sha256=PyocCEPxByB-E5gRCZitI5gsP6DVYlxmRx8bbZ31guA,8524
|
|
38
38
|
autogluon/tabular/models/ebm/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
39
39
|
autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=IbDv3Ufx8CGHvejqSbAggZKlMq5X9k0Ggclm_DCoiII,1080
|
|
40
40
|
autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=G6zgHERKt_KJlVfZ06tFKw2aOUuM7DdDyCm0s5RBXoc,2191
|
|
@@ -43,7 +43,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
|
|
|
43
43
|
autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
|
|
44
44
|
autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
|
|
45
45
|
autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
|
|
46
|
-
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=
|
|
46
|
+
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=FqT6xqhU2XoTWJ0yY_ZmT3JI6ranl63vpdPkn6JFbos,29666
|
|
47
47
|
autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
48
48
|
autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
|
|
49
49
|
autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
|
|
@@ -57,25 +57,25 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
|
|
|
57
57
|
autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
|
|
58
58
|
autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
59
59
|
autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
|
|
60
|
-
autogluon/tabular/models/knn/knn_model.py,sha256=
|
|
60
|
+
autogluon/tabular/models/knn/knn_model.py,sha256=I7wPRy38oD03f_3KN7Q_CyoJJucDPrPQyJqjgovmx8Q,14061
|
|
61
61
|
autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
|
|
62
62
|
autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
|
|
63
63
|
autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
64
64
|
autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
|
|
65
|
-
autogluon/tabular/models/lgb/lgb_model.py,sha256=
|
|
65
|
+
autogluon/tabular/models/lgb/lgb_model.py,sha256=kRIcBBIDMJ2inaZeJXO5uhAG0qUigwYseJoFQ7jzqQE,27415
|
|
66
66
|
autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
|
|
67
67
|
autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
68
68
|
autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
|
|
69
69
|
autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
|
|
70
70
|
autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
71
|
-
autogluon/tabular/models/lr/lr_model.py,sha256=
|
|
72
|
-
autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=
|
|
71
|
+
autogluon/tabular/models/lr/lr_model.py,sha256=2A6e8Itw-PgjOLjVXeo8bJwFQuVSGYwJNVxhHxFQXlw,15732
|
|
72
|
+
autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=tgb75V6zHfMJh8m9GDs5404ItdfwNakqykTk0qjBtFE,1045
|
|
73
73
|
autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
|
|
74
74
|
autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
75
75
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
|
76
76
|
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
|
|
77
77
|
autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
78
|
-
autogluon/tabular/models/mitra/mitra_model.py,sha256=
|
|
78
|
+
autogluon/tabular/models/mitra/mitra_model.py,sha256=TzjozU19zQLU09S2tM8Sfe7TiTBSDDjld-tVt5L1JGQ,13954
|
|
79
79
|
autogluon/tabular/models/mitra/sklearn_interface.py,sha256=vyg8kkmYKzEJRWiehEqEsgZeOCV20tnZAZaaaJkwDuA,17739
|
|
80
80
|
autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
|
|
81
81
|
autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
|
|
@@ -101,23 +101,23 @@ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=o_S572-nKrhwxmEF
|
|
|
101
101
|
autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
|
|
102
102
|
autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
|
|
103
103
|
autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
104
|
-
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=
|
|
104
|
+
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=3pe_yhOGW8cbX3KgNs25s3FP0P3FzVSAS-hd4jMFjDg,14573
|
|
105
105
|
autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
106
|
-
autogluon/tabular/models/rf/rf_model.py,sha256=
|
|
106
|
+
autogluon/tabular/models/rf/rf_model.py,sha256=auvNHx0qD9Pz8rS6yNIuG9cHzFNquv8fOVS7FWZNIAw,21721
|
|
107
107
|
autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
|
|
108
108
|
autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
|
|
109
109
|
autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
110
110
|
autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
|
|
111
111
|
autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
|
|
112
112
|
autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
113
|
-
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=
|
|
113
|
+
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=_Eq3g9babdC17kyvAA0rIqtZEtiRGwM2XngkbWevXpU,6283
|
|
114
114
|
autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
115
115
|
autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
|
|
116
116
|
autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
|
|
117
|
-
autogluon/tabular/models/tabm/tabm_model.py,sha256=
|
|
117
|
+
autogluon/tabular/models/tabm/tabm_model.py,sha256=_SGc7R87ug9m8KGd_BgC9maJ7sjOAlYB9vtg1omwOto,13640
|
|
118
118
|
autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
|
|
119
119
|
autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
120
|
-
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=
|
|
120
|
+
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=NAuV3rJia-UNnFwiFU5tkz6vzZ2lokQ_12vUJ3E6wAA,16498
|
|
121
121
|
autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
122
122
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
|
|
123
123
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
|
|
@@ -143,7 +143,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
|
|
|
143
143
|
autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
144
144
|
autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
|
|
145
145
|
autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
146
|
-
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=
|
|
146
|
+
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=nXZcq4SMV54dciOKFM57Suc9eVyXQXy-2iN6moRt2b8,14801
|
|
147
147
|
autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
|
|
148
148
|
autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
|
|
149
149
|
autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
|
|
@@ -159,7 +159,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
|
|
|
159
159
|
autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
|
|
160
160
|
autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
|
|
161
161
|
autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
162
|
-
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=
|
|
162
|
+
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=TGVMv_ClKh0iYVVCqgd19DE-1fXk_VODpsXIMvzI3Sw,42978
|
|
163
163
|
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
|
|
164
164
|
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
|
|
165
165
|
autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -170,7 +170,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
|
|
|
170
170
|
autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
|
|
171
171
|
autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
172
172
|
autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
|
|
173
|
-
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=
|
|
173
|
+
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=tKVLvBnuTbDaFwBRVDZ5ADo4PjBF2FDR93Ib86WYTMM,15630
|
|
174
174
|
autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
|
|
175
175
|
autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
176
176
|
autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
|
|
@@ -179,12 +179,12 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
|
|
|
179
179
|
autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
|
|
180
180
|
autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
|
|
181
181
|
autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
|
|
182
|
-
autogluon/tabular/predictor/predictor.py,sha256=
|
|
182
|
+
autogluon/tabular/predictor/predictor.py,sha256=fjw7CQALXZ7AR18ryLm4xWwDzRBeUnrmNubPS8U_pmQ,361223
|
|
183
183
|
autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
|
|
184
184
|
autogluon/tabular/registry/_ag_model_registry.py,sha256=2Zx5qxXvOdXIbL1FKslNh2M_JM2YG_7GvsCMFF11wDY,1578
|
|
185
185
|
autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
|
|
186
186
|
autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
|
|
187
|
-
autogluon/tabular/testing/fit_helper.py,sha256=
|
|
187
|
+
autogluon/tabular/testing/fit_helper.py,sha256=pj3P0ENMDhr04laxsLL0_IDX-8msMFo9Wn5XSLFCaqI,21092
|
|
188
188
|
autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
|
|
189
189
|
autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
|
|
190
190
|
autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
|
|
@@ -195,11 +195,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
|
|
|
195
195
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
|
196
196
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
197
197
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
198
|
+
autogluon_tabular-1.4.1b20251212.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
199
|
+
autogluon_tabular-1.4.1b20251212.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
200
|
+
autogluon_tabular-1.4.1b20251212.dist-info/METADATA,sha256=zz1d_XxR_rQbF0YVjfQfro0mV3xwJR1AqaEdf8tIYSY,17015
|
|
201
|
+
autogluon_tabular-1.4.1b20251212.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
202
|
+
autogluon_tabular-1.4.1b20251212.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
203
|
+
autogluon_tabular-1.4.1b20251212.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
204
|
+
autogluon_tabular-1.4.1b20251212.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
205
|
+
autogluon_tabular-1.4.1b20251212.dist-info/RECORD,,
|
|
@@ -1 +0,0 @@
|
|
|
1
|
-
import sys, types, os;has_mfs = sys.version_info > (3, 5);p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = has_mfs and __import__('importlib.util');has_mfs and __import__('importlib.machinery');m = has_mfs and sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251212.dist-info}/zip-safe
RENAMED
|
File without changes
|