autogluon.tabular 1.4.1b20250916__py3-none-any.whl → 1.4.1b20251128__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (29) hide show
  1. autogluon/tabular/models/catboost/catboost_model.py +3 -4
  2. autogluon/tabular/models/ebm/ebm_model.py +2 -6
  3. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +4 -2
  4. autogluon/tabular/models/knn/knn_model.py +6 -2
  5. autogluon/tabular/models/lgb/lgb_model.py +56 -24
  6. autogluon/tabular/models/lr/lr_model.py +6 -4
  7. autogluon/tabular/models/lr/lr_preprocessing_utils.py +6 -7
  8. autogluon/tabular/models/mitra/mitra_model.py +2 -7
  9. autogluon/tabular/models/realmlp/realmlp_model.py +1 -4
  10. autogluon/tabular/models/rf/rf_model.py +6 -4
  11. autogluon/tabular/models/tabicl/tabicl_model.py +1 -4
  12. autogluon/tabular/models/tabm/tabm_model.py +76 -3
  13. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +7 -5
  14. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +1 -4
  15. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -4
  16. autogluon/tabular/models/xgboost/xgboost_model.py +8 -5
  17. autogluon/tabular/predictor/predictor.py +3 -2
  18. autogluon/tabular/testing/fit_helper.py +28 -0
  19. autogluon/tabular/version.py +1 -1
  20. autogluon.tabular-1.4.1b20251128-py3.11-nspkg.pth +1 -0
  21. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/METADATA +83 -74
  22. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/RECORD +28 -28
  23. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/WHEEL +1 -1
  24. autogluon.tabular-1.4.1b20250916-py3.9-nspkg.pth +0 -1
  25. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info/licenses}/LICENSE +0 -0
  26. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info/licenses}/NOTICE +0 -0
  27. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/namespace_packages.txt +0 -0
  28. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/top_level.txt +0 -0
  29. {autogluon.tabular-1.4.1b20250916.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/zip-safe +0 -0
@@ -32,6 +32,7 @@ class XGBoostModel(AbstractModel):
32
32
  ag_key = "XGB"
33
33
  ag_name = "XGBoost"
34
34
  ag_priority = 40
35
+ seed_name = "seed"
35
36
 
36
37
  def __init__(self, **kwargs):
37
38
  super().__init__(**kwargs)
@@ -75,15 +76,11 @@ class XGBoostModel(AbstractModel):
75
76
 
76
77
  return X
77
78
 
78
- def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
79
- return hyperparameters.get("seed", "N/A")
80
-
81
79
  def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=None, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
82
80
  # TODO: utilize sample_weight_val in early-stopping if provided
83
81
  start_time = time.time()
84
82
  ag_params = self._get_ag_params()
85
83
  params = self._get_model_params()
86
- params["seed"] = self.random_seed
87
84
  generate_curves = ag_params.get("generate_curves", False)
88
85
 
89
86
  if generate_curves:
@@ -186,12 +183,18 @@ class XGBoostModel(AbstractModel):
186
183
  from xgboost import XGBClassifier, XGBRegressor
187
184
 
188
185
  model_type = XGBClassifier if self.problem_type in PROBLEM_TYPES_CLASSIFICATION else XGBRegressor
189
- self.model = model_type(**params)
186
+
190
187
  import warnings
191
188
 
192
189
  with warnings.catch_warnings():
193
190
  # FIXME: v1.1: Upgrade XGBoost to 2.0.1+ to avoid deprecation warnings from Pandas 2.1+ during XGBoost fit.
194
191
  warnings.simplefilter(action="ignore", category=FutureWarning)
192
+ if params.get("device", "cpu") == "cuda:0":
193
+ # verbosity=0 to hide UserWarning: Falling back to prediction using DMatrix due to mismatched devices.
194
+ # TODO: Find a way to hide this warning without setting verbosity=0
195
+ # ref: https://github.com/dmlc/xgboost/issues/9791
196
+ params["verbosity"] = 0
197
+ self.model = model_type(**params)
195
198
  self.model.fit(X=X, y=y, eval_set=eval_set, verbose=False, sample_weight=sample_weight)
196
199
 
197
200
  if generate_curves:
@@ -20,6 +20,7 @@ from autogluon.common import FeatureMetadata, TabularDataset
20
20
  from autogluon.common.loaders import load_json
21
21
  from autogluon.common.savers import save_json
22
22
  from autogluon.common.utils.file_utils import get_directory_size, get_directory_size_per_file
23
+ from autogluon.common.utils.resource_utils import ResourceManager, get_resource_manager
23
24
  from autogluon.common.utils.hyperparameter_utils import get_hyperparameter_str_deprecation_msg, is_advanced_hyperparameter_format
24
25
  from autogluon.common.utils.log_utils import add_log_to_file, set_logger_verbosity, warn_if_mlflow_autologging_is_enabled
25
26
  from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
@@ -1091,7 +1092,8 @@ class TabularPredictor:
1091
1092
  elif verbosity >= 4:
1092
1093
  logger.log(20, f"Verbosity: {verbosity} (Maximum Logging)")
1093
1094
 
1094
- include_gpu_count = verbosity >= 3
1095
+ resource_manager: ResourceManager = get_resource_manager()
1096
+ include_gpu_count = resource_manager.get_gpu_count_torch() or verbosity >= 3
1095
1097
  sys_msg = get_ag_system_info(path=self.path, include_gpu_count=include_gpu_count)
1096
1098
  logger.log(20, sys_msg)
1097
1099
 
@@ -1630,7 +1632,6 @@ class TabularPredictor:
1630
1632
  if _ds_ray is not None:
1631
1633
  # Handle resources
1632
1634
  # FIXME: what about distributed?
1633
- from autogluon.common.utils.resource_utils import ResourceManager
1634
1635
 
1635
1636
  total_resources = ag_fit_kwargs["core_kwargs"]["total_resources"]
1636
1637
 
@@ -175,6 +175,7 @@ class FitHelper:
175
175
  use_test_for_val: bool = False,
176
176
  raise_on_model_failure: bool | None = None,
177
177
  deepcopy_fit_args: bool = True,
178
+ verify_model_seed: bool = False,
178
179
  ) -> TabularPredictor:
179
180
  if compiler_configs is None:
180
181
  compiler_configs = {}
@@ -269,6 +270,11 @@ class FitHelper:
269
270
  assert not model_info["val_in_fit"], f"val data must not be present in refit model if `can_refit_full=True`. Maybe an exception occurred?"
270
271
  else:
271
272
  assert model_info["val_in_fit"], f"val data must be present in refit model if `can_refit_full=False`"
273
+ if verify_model_seed:
274
+ model_names = predictor.model_names()
275
+ for model_name in model_names:
276
+ model = predictor._trainer.load_model(model_name)
277
+ _verify_model_seed(model=model)
272
278
 
273
279
  if predictor_info:
274
280
  predictor.info()
@@ -339,6 +345,7 @@ class FitHelper:
339
345
  require_known_problem_types: bool = True,
340
346
  raise_on_model_failure: bool = True,
341
347
  problem_types: list[str] | None = None,
348
+ verify_model_seed: bool = True,
342
349
  **kwargs,
343
350
  ):
344
351
  """
@@ -355,12 +362,18 @@ class FitHelper:
355
362
  problem_types: list[str], optional
356
363
  If specified, checks the given problem_types.
357
364
  If None, checks `model_cls.supported_problem_types()`
365
+ verify_model_seed: bool = True
358
366
  **kwargs
359
367
 
360
368
  Returns
361
369
  -------
362
370
 
363
371
  """
372
+ if verify_model_seed and model_cls.seed_name is not None:
373
+ # verify that the seed logic works
374
+ model_hyperparameters = model_hyperparameters.copy()
375
+ model_hyperparameters[model_cls.seed_name] = 42
376
+
364
377
  fit_args = dict(
365
378
  hyperparameters={model_cls: model_hyperparameters},
366
379
  )
@@ -429,6 +442,7 @@ class FitHelper:
429
442
  refit_full=refit_full,
430
443
  extra_metrics=_extra_metrics,
431
444
  raise_on_model_failure=raise_on_model_failure,
445
+ verify_model_seed=verify_model_seed,
432
446
  **kwargs,
433
447
  )
434
448
 
@@ -460,6 +474,7 @@ class FitHelper:
460
474
  refit_full=refit_full,
461
475
  extra_metrics=_extra_metrics,
462
476
  raise_on_model_failure=raise_on_model_failure,
477
+ verify_model_seed=verify_model_seed,
463
478
  **kwargs,
464
479
  )
465
480
 
@@ -476,3 +491,16 @@ def stacked_overfitting_assert(
476
491
  if expected_stacked_overfitting_at_test is not None:
477
492
  stacked_overfitting = check_stacked_overfitting_from_leaderboard(lb)
478
493
  assert stacked_overfitting == expected_stacked_overfitting_at_test, "Expected stacked overfitting at test mismatch!"
494
+
495
+
496
+ def _verify_model_seed(model: AbstractModel):
497
+ assert model.random_seed is None or isinstance(model.random_seed, int)
498
+ if model.seed_name is not None:
499
+ if model.seed_name in model._user_params:
500
+ assert model.random_seed == model._user_params[model.seed_name]
501
+ assert model.seed_name in model.params
502
+ assert model.random_seed == model.params[model.seed_name]
503
+ if isinstance(model, BaggedEnsembleModel):
504
+ for child in model.models:
505
+ child = model.load_child(child)
506
+ _verify_model_seed(child)
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250916"
3
+ __version__ = "1.4.1b20251128"
4
4
  __lite__ = False
@@ -0,0 +1 @@
1
+ import sys, types, os;p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = __import__('importlib.util');__import__('importlib.machinery');m = sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20250916
3
+ Version: 1.4.1b20251128
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -24,121 +23,130 @@ Classifier: Operating System :: Microsoft :: Windows
24
23
  Classifier: Operating System :: POSIX
25
24
  Classifier: Operating System :: Unix
26
25
  Classifier: Programming Language :: Python :: 3
27
- Classifier: Programming Language :: Python :: 3.9
28
26
  Classifier: Programming Language :: Python :: 3.10
29
27
  Classifier: Programming Language :: Python :: 3.11
30
28
  Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
31
30
  Classifier: Topic :: Software Development
32
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
- Requires-Python: >=3.9, <3.13
34
+ Requires-Python: >=3.10, <3.14
36
35
  Description-Content-Type: text/markdown
37
- License-File: ../LICENSE
38
- License-File: ../NOTICE
36
+ License-File: LICENSE
37
+ License-File: NOTICE
39
38
  Requires-Dist: numpy<2.4.0,>=1.25.0
40
39
  Requires-Dist: scipy<1.17,>=1.5.4
41
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
42
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.4.1b20250916
45
- Requires-Dist: autogluon.features==1.4.1b20250916
46
- Provides-Extra: all
47
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
48
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
49
- Requires-Dist: spacy<3.9; extra == "all"
50
- Requires-Dist: transformers; extra == "all"
51
- Requires-Dist: loguru; extra == "all"
52
- Requires-Dist: torch<2.8,>=2.6; extra == "all"
53
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
54
- Requires-Dist: omegaconf; extra == "all"
55
- Requires-Dist: autogluon.core[all]==1.4.1b20250916; extra == "all"
56
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
57
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
58
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
59
- Requires-Dist: einx; extra == "all"
60
- Requires-Dist: huggingface-hub[torch]; extra == "all"
61
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
43
+ Requires-Dist: autogluon.core==1.4.1b20251128
44
+ Requires-Dist: autogluon.features==1.4.1b20251128
45
+ Provides-Extra: lightgbm
46
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
62
47
  Provides-Extra: catboost
63
48
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
64
49
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
50
+ Provides-Extra: xgboost
51
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
52
+ Provides-Extra: realmlp
53
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
54
+ Provides-Extra: interpret
55
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
65
56
  Provides-Extra: fastai
66
57
  Requires-Dist: spacy<3.9; extra == "fastai"
67
58
  Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
68
59
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
69
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "fastai"
70
- Provides-Extra: imodels
71
- Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
72
- Provides-Extra: interpret
73
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
74
- Provides-Extra: lightgbm
75
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
60
+ Provides-Extra: tabm
61
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
62
+ Provides-Extra: tabpfn
63
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
64
+ Provides-Extra: tabpfnmix
65
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabpfnmix"
66
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
67
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
76
68
  Provides-Extra: mitra
77
69
  Requires-Dist: loguru; extra == "mitra"
78
70
  Requires-Dist: einx; extra == "mitra"
79
71
  Requires-Dist: omegaconf; extra == "mitra"
80
72
  Requires-Dist: torch<2.8,>=2.6; extra == "mitra"
81
73
  Requires-Dist: transformers; extra == "mitra"
82
- Requires-Dist: huggingface-hub[torch]; extra == "mitra"
74
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
83
75
  Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
76
+ Provides-Extra: tabicl
77
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
84
78
  Provides-Extra: ray
85
- Requires-Dist: autogluon.core[all]==1.4.1b20250916; extra == "ray"
86
- Provides-Extra: realmlp
87
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
79
+ Requires-Dist: autogluon.core[all]==1.4.1b20251128; extra == "ray"
88
80
  Provides-Extra: skex
89
81
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
82
+ Provides-Extra: imodels
83
+ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
90
84
  Provides-Extra: skl2onnx
85
+ Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
86
+ Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
91
87
  Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
92
88
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
93
89
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
94
- Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
95
- Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
90
+ Provides-Extra: all
91
+ Requires-Dist: omegaconf; extra == "all"
92
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
93
+ Requires-Dist: spacy<3.9; extra == "all"
94
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
95
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
96
+ Requires-Dist: einx; extra == "all"
97
+ Requires-Dist: autogluon.core[all]==1.4.1b20251128; extra == "all"
98
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
99
+ Requires-Dist: torch<2.8,>=2.6; extra == "all"
100
+ Requires-Dist: loguru; extra == "all"
101
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
102
+ Requires-Dist: transformers; extra == "all"
103
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
104
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
96
105
  Provides-Extra: tabarena
97
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
98
- Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
99
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
106
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
107
+ Requires-Dist: omegaconf; extra == "tabarena"
108
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
109
+ Requires-Dist: spacy<3.9; extra == "tabarena"
100
110
  Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
101
- Requires-Dist: einx; extra == "tabarena"
102
- Requires-Dist: transformers; extra == "tabarena"
103
111
  Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
104
- Requires-Dist: loguru; extra == "tabarena"
105
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
106
- Requires-Dist: omegaconf; extra == "tabarena"
107
- Requires-Dist: autogluon.core[all]==1.4.1b20250916; extra == "tabarena"
108
112
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
109
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
110
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
111
- Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
113
+ Requires-Dist: einx; extra == "tabarena"
114
+ Requires-Dist: autogluon.core[all]==1.4.1b20251128; extra == "tabarena"
115
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
116
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
117
+ Requires-Dist: loguru; extra == "tabarena"
118
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
119
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
120
+ Requires-Dist: transformers; extra == "tabarena"
112
121
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
113
- Requires-Dist: spacy<3.9; extra == "tabarena"
114
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
115
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
116
- Provides-Extra: tabicl
117
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
118
- Provides-Extra: tabm
119
- Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
120
- Provides-Extra: tabpfn
121
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
122
- Provides-Extra: tabpfnmix
123
- Requires-Dist: torch<2.8,>=2.6; extra == "tabpfnmix"
124
- Requires-Dist: huggingface-hub[torch]; extra == "tabpfnmix"
125
- Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
122
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
123
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
126
124
  Provides-Extra: tests
127
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
128
126
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
129
127
  Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
130
128
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
131
129
  Requires-Dist: torch<2.8,>=2.6; extra == "tests"
132
- Requires-Dist: huggingface-hub[torch]; extra == "tests"
130
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
133
131
  Requires-Dist: einops<0.9,>=0.7; extra == "tests"
134
132
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
133
+ Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
134
+ Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
135
135
  Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
136
136
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
137
137
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
138
- Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
139
- Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
140
- Provides-Extra: xgboost
141
- Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
138
+ Dynamic: author
139
+ Dynamic: classifier
140
+ Dynamic: description
141
+ Dynamic: description-content-type
142
+ Dynamic: home-page
143
+ Dynamic: license
144
+ Dynamic: license-file
145
+ Dynamic: project-url
146
+ Dynamic: provides-extra
147
+ Dynamic: requires-dist
148
+ Dynamic: requires-python
149
+ Dynamic: summary
142
150
 
143
151
 
144
152
 
@@ -149,7 +157,7 @@ Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
149
157
 
150
158
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
151
159
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
152
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
160
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
153
161
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
154
162
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
155
163
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -166,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
166
174
 
167
175
  ## 💾 Installation
168
176
 
169
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
177
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
170
178
 
171
179
  You can install AutoGluon with:
172
180
 
@@ -189,8 +197,8 @@ predictions = predictor.predict("test.csv")
189
197
  | AutoGluon Task | Quickstart | API |
190
198
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
191
199
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
192
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
193
200
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
201
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
194
202
 
195
203
  ## :mag: Resources
196
204
 
@@ -213,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
213
221
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
214
222
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
215
223
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
216
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
224
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
225
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
226
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
227
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
217
228
 
218
229
  ### Articles
219
230
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -239,5 +250,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
239
250
  ## :classical_building: License
240
251
 
241
252
  This library is licensed under the Apache 2.0 License.
242
-
243
-
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.4.1b20250916-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.1b20251128-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=PJLHItLsEuiSU6FHS9KM8qlePy9Hl2PJXdR7LaCNt3k,91
3
+ autogluon/tabular/version.py,sha256=o2ibx9JDxffYcPPTJ0EoXvrDEj6CqbeXY2VjOS3j_WA,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -27,14 +27,14 @@ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB
27
27
  autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
28
28
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
30
- autogluon/tabular/models/catboost/catboost_model.py,sha256=mcNL00envms32XqbGXr3dMujMIdx9lC4U3F_XkO8ru8,18150
30
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=tAT_eklRJDARJsbS72-Nn8PxLmKgIvffzjjrTI1XMXM,18041
31
31
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
32
32
  autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
33
33
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
35
35
  autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
36
36
  autogluon/tabular/models/ebm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- autogluon/tabular/models/ebm/ebm_model.py,sha256=vUnOXtBaoqc2JrY1DcJ7Y1KfMem3ZrXE-7cQWn1DwEQ,8693
37
+ autogluon/tabular/models/ebm/ebm_model.py,sha256=PyocCEPxByB-E5gRCZitI5gsP6DVYlxmRx8bbZ31guA,8524
38
38
  autogluon/tabular/models/ebm/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
39
  autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=IbDv3Ufx8CGHvejqSbAggZKlMq5X9k0Ggclm_DCoiII,1080
40
40
  autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=G6zgHERKt_KJlVfZ06tFKw2aOUuM7DdDyCm0s5RBXoc,2191
@@ -43,7 +43,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
43
43
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
44
44
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
45
45
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
46
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=efy4BJr1DiurTTKh2ouYuujfwdY4c969XH314qeLwL8,29571
46
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=FqT6xqhU2XoTWJ0yY_ZmT3JI6ranl63vpdPkn6JFbos,29666
47
47
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
48
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
49
49
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -57,25 +57,25 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
57
57
  autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
58
58
  autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
59
  autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
60
- autogluon/tabular/models/knn/knn_model.py,sha256=o_AsOduOGI9XM4GNNAFNUBgDIqCrAcPMawTX2s71UtA,13992
60
+ autogluon/tabular/models/knn/knn_model.py,sha256=I7wPRy38oD03f_3KN7Q_CyoJJucDPrPQyJqjgovmx8Q,14061
61
61
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
62
62
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
63
63
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
64
  autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
65
- autogluon/tabular/models/lgb/lgb_model.py,sha256=fVxDtzmEG2hEBQpAIUcfxQjy54PTgX5djg2XTa_y1eI,26072
65
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=kRIcBBIDMJ2inaZeJXO5uhAG0qUigwYseJoFQ7jzqQE,27415
66
66
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
67
67
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
69
69
  autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
70
70
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/lr/lr_model.py,sha256=9qoGwrIsnayXCp6OcuzSUSe3uiP21diQBjGFU-2vdJE,15765
72
- autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
71
+ autogluon/tabular/models/lr/lr_model.py,sha256=2A6e8Itw-PgjOLjVXeo8bJwFQuVSGYwJNVxhHxFQXlw,15732
72
+ autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=tgb75V6zHfMJh8m9GDs5404ItdfwNakqykTk0qjBtFE,1045
73
73
  autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
74
74
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
75
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
76
76
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
77
77
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
78
- autogluon/tabular/models/mitra/mitra_model.py,sha256=6mf37K0a_OK3KTGxWMcP1J3agMpd4EHBcuCgSPqxpXE,14136
78
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=TzjozU19zQLU09S2tM8Sfe7TiTBSDDjld-tVt5L1JGQ,13954
79
79
  autogluon/tabular/models/mitra/sklearn_interface.py,sha256=vyg8kkmYKzEJRWiehEqEsgZeOCV20tnZAZaaaJkwDuA,17739
80
80
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
81
81
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
@@ -101,23 +101,23 @@ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=o_S572-nKrhwxmEF
101
101
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
102
102
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
103
103
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=ASplFpuDmzm-PMjaG_V7swhAgcowr5qYZo8QcsHDltA,14740
104
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=3pe_yhOGW8cbX3KgNs25s3FP0P3FzVSAS-hd4jMFjDg,14573
105
105
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
- autogluon/tabular/models/rf/rf_model.py,sha256=wS2tFehnACoP_ZKsTqaLuLaAlL6E1IDOMNAi0MbX6Yo,21796
106
+ autogluon/tabular/models/rf/rf_model.py,sha256=smL9Ifi94lGjAmFUTRXUxbj7gdvmVteS_ePiJbj0wSk,21762
107
107
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
108
108
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
109
109
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
110
110
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
111
111
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
112
112
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=fSn-7P6Eo2H74EBFHjnav38x9hQQRCT-0_I2_TsBidw,6450
113
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=_Eq3g9babdC17kyvAA0rIqtZEtiRGwM2XngkbWevXpU,6283
114
114
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
115
115
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
116
116
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
117
- autogluon/tabular/models/tabm/tabm_model.py,sha256=LmCVrldOFC0mBuUhDx9vIHQ85bFXtv0YjOAqo14_0cA,10447
117
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=_SGc7R87ug9m8KGd_BgC9maJ7sjOAlYB9vtg1omwOto,13640
118
118
  autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
119
119
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
120
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=2uc4O8r2UJBk2tYpZ_wI9v4kN2NIce46W96tm_HDO3w,16315
120
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=NAuV3rJia-UNnFwiFU5tkz6vzZ2lokQ_12vUJ3E6wAA,16498
121
121
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
122
122
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
123
123
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
@@ -143,7 +143,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
143
143
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
144
144
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
145
145
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=9HP8H2mhu9VihafICVnBQIYNyWVKZwO1T7tBzHEIZYU,14972
146
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=nXZcq4SMV54dciOKFM57Suc9eVyXQXy-2iN6moRt2b8,14801
147
147
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
148
148
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
149
149
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -159,7 +159,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
159
159
  autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
160
160
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
161
161
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=y_rijxQyvqjmMHXLmDDc-45E91We7c3iUWFuPtncGd0,43158
162
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=s76Ca8Vgr65gsjCbU_W8A4o6wk7GHcOerQc5XL9ftTU,43070
163
163
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
164
164
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
165
165
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -170,7 +170,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
170
170
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
171
171
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
172
172
  autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
173
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=L9C1EVtWp2Rfx2NSq2KmCQ0uTr80H7x-DpQsaS406EE,15424
173
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=tKVLvBnuTbDaFwBRVDZ5ADo4PjBF2FDR93Ib86WYTMM,15630
174
174
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
175
175
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
176
176
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
@@ -179,12 +179,12 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
179
179
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
180
180
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
181
181
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
182
- autogluon/tabular/predictor/predictor.py,sha256=5iexlgiMkDUdGTqvq87MExfsnVdpLWZZrLZcq9lB3do,361108
182
+ autogluon/tabular/predictor/predictor.py,sha256=fjw7CQALXZ7AR18ryLm4xWwDzRBeUnrmNubPS8U_pmQ,361223
183
183
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
184
184
  autogluon/tabular/registry/_ag_model_registry.py,sha256=2Zx5qxXvOdXIbL1FKslNh2M_JM2YG_7GvsCMFF11wDY,1578
185
185
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
186
186
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
187
- autogluon/tabular/testing/fit_helper.py,sha256=0eTvPtqM8k8hlOUIHQiwTzik4juTjHQt12BySk0klt4,19816
187
+ autogluon/tabular/testing/fit_helper.py,sha256=pj3P0ENMDhr04laxsLL0_IDX-8msMFo9Wn5XSLFCaqI,21092
188
188
  autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
189
189
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
190
190
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
@@ -195,11 +195,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
195
195
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
196
196
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
197
197
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
198
- autogluon.tabular-1.4.1b20250916.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
199
- autogluon.tabular-1.4.1b20250916.dist-info/METADATA,sha256=kpMBLSzhFXGaxOkt6B9vBS7BW8PdV4szE6-NMJtZx8k,16451
200
- autogluon.tabular-1.4.1b20250916.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
201
- autogluon.tabular-1.4.1b20250916.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
202
- autogluon.tabular-1.4.1b20250916.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
203
- autogluon.tabular-1.4.1b20250916.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
204
- autogluon.tabular-1.4.1b20250916.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
205
- autogluon.tabular-1.4.1b20250916.dist-info/RECORD,,
198
+ autogluon_tabular-1.4.1b20251128.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
199
+ autogluon_tabular-1.4.1b20251128.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
200
+ autogluon_tabular-1.4.1b20251128.dist-info/METADATA,sha256=nfjp5O1DhRltAy5GwDyvbauYM7iey7CQRfDOGjuPlvs,16854
201
+ autogluon_tabular-1.4.1b20251128.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
202
+ autogluon_tabular-1.4.1b20251128.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
203
+ autogluon_tabular-1.4.1b20251128.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
204
+ autogluon_tabular-1.4.1b20251128.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
205
+ autogluon_tabular-1.4.1b20251128.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.1)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1 +0,0 @@
1
- import sys, types, os;has_mfs = sys.version_info > (3, 5);p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = has_mfs and __import__('importlib.util');has_mfs and __import__('importlib.machinery');m = has_mfs and sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)