autogluon.tabular 1.4.1b20250909__py3-none-any.whl → 1.4.1b20251006__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

@@ -314,6 +314,8 @@ class CatBoostModel(AbstractModel):
314
314
  max_memory_iters = math.floor(available_mem * max_memory_proportion / mem_usage_per_iter)
315
315
 
316
316
  final_iters = min(default_iters, min(max_memory_iters, estimated_iters_in_time))
317
+ if final_iters < 1:
318
+ raise TimeLimitExceeded
317
319
  return final_iters
318
320
 
319
321
  def _predict_proba(self, X, **kwargs):
@@ -255,9 +255,13 @@ class KNNModel(AbstractModel):
255
255
  self._X_unused_index = [i for i in range(num_rows_max) if i not in idx]
256
256
  return self.model
257
257
 
258
- def _get_maximum_resources(self) -> Dict[str, Union[int, float]]:
258
+ def _get_maximum_resources(self) -> dict[str, int | float]:
259
259
  # use at most 32 cpus to avoid OpenBLAS error: https://github.com/autogluon/autogluon/issues/1020
260
- return {"num_cpus": 32}
260
+ # no GPU support
261
+ return {
262
+ "num_cpus": 32,
263
+ "num_gpus": 0,
264
+ }
261
265
 
262
266
  def _get_default_resources(self):
263
267
  # use at most 32 cpus to avoid OpenBLAS error: https://github.com/autogluon/autogluon/issues/1020
@@ -168,7 +168,7 @@ class LGBModel(AbstractModel):
168
168
  # Before enabling GPU, we should add code to detect that GPU-enabled version is installed and that a valid GPU exists.
169
169
  # GPU training heavily alters accuracy, often in a negative manner. We will have to be careful about when to use GPU.
170
170
  params["device"] = "gpu"
171
- logger.log(20, f"\tTraining {self.name} with GPU, note that this may negatively impact model quality compared to CPU training.")
171
+ logger.log(20, f"\tWarning: Training LightGBM with GPU. This may negatively impact model quality compared to CPU training.")
172
172
  logger.log(15, f"\tFitting {num_boost_round} rounds... Hyperparameters: {params}")
173
173
 
174
174
  if "num_threads" not in params:
@@ -305,16 +305,28 @@ class LGBModel(AbstractModel):
305
305
  try:
306
306
  self.model = train_lgb_model(early_stopping_callback_kwargs=early_stopping_callback_kwargs, **train_params)
307
307
  except LightGBMError:
308
- if train_params["params"].get("device", "cpu") != "gpu":
308
+ if train_params["params"].get("device", "cpu") not in ["gpu", "cuda"]:
309
309
  raise
310
310
  else:
311
- logger.warning(
312
- "Warning: GPU mode might not be installed for LightGBM, GPU training raised an exception. Falling back to CPU training..."
313
- "Refer to LightGBM GPU documentation: https://github.com/Microsoft/LightGBM/tree/master/python-package#build-gpu-version"
314
- "One possible method is:"
315
- "\tpip uninstall lightgbm -y"
316
- "\tpip install lightgbm --install-option=--gpu"
317
- )
311
+ if train_params["params"]["device"] == "gpu":
312
+ logger.warning(
313
+ "Warning: GPU mode might not be installed for LightGBM, "
314
+ "GPU training raised an exception. Falling back to CPU training..."
315
+ "Refer to LightGBM GPU documentation: "
316
+ "https://github.com/Microsoft/LightGBM/tree/master/python-package#build-gpu-version"
317
+ "One possible method is:"
318
+ "\tpip uninstall lightgbm -y"
319
+ "\tpip install lightgbm --install-option=--gpu"
320
+ )
321
+ elif train_params["params"]["device"] == "cuda":
322
+ # Current blocker for using CUDA over GPU: https://github.com/microsoft/LightGBM/issues/6828
323
+ # Note that device="cuda" works if AutoGluon (and therefore LightGBM) is installed via conda.
324
+ logger.warning(
325
+ "Warning: CUDA mode might not be installed for LightGBM, "
326
+ "CUDA training raised an exception. Falling back to CPU training..."
327
+ "Refer to LightGBM CUDA documentation: "
328
+ "https://github.com/Microsoft/LightGBM/tree/master/python-package#build-cuda-version"
329
+ )
318
330
  train_params["params"]["device"] = "cpu"
319
331
  self.model = train_lgb_model(early_stopping_callback_kwargs=early_stopping_callback_kwargs, **train_params)
320
332
  retrain = False
@@ -515,17 +527,44 @@ class LGBModel(AbstractModel):
515
527
  default_auxiliary_params.update(extra_auxiliary_params)
516
528
  return default_auxiliary_params
517
529
 
518
- def _is_gpu_lgbm_installed(self):
530
+ @staticmethod
531
+ def _is_gpu_lgbm_installed():
519
532
  # Taken from https://github.com/microsoft/LightGBM/issues/3939
520
533
  try_import_lightgbm()
521
534
  import lightgbm
522
535
 
536
+ rng = np.random.RandomState(42)
537
+ data = rng.rand(25, 2)
538
+ label = rng.randint(2, size=25)
539
+
540
+ try:
541
+ train_data = lightgbm.Dataset(data, label=label)
542
+ params = {
543
+ "device": "gpu",
544
+ "verbose": -1,
545
+ }
546
+ gbm = lightgbm.train(params, num_boost_round=10, train_set=train_data)
547
+ return True
548
+ except Exception as e:
549
+ return False
550
+
551
+ @staticmethod
552
+ def _is_cuda_lgbm_installed():
553
+ # Taken from https://github.com/microsoft/LightGBM/issues/3939
554
+ try_import_lightgbm()
555
+ import lightgbm
556
+
557
+ rng = np.random.RandomState(42)
558
+ data = rng.rand(25, 2)
559
+ label = rng.randint(2, size=25)
560
+
523
561
  try:
524
- data = np.random.rand(50, 2)
525
- label = np.random.randint(2, size=50)
526
562
  train_data = lightgbm.Dataset(data, label=label)
527
- params = {"device": "gpu"}
528
- gbm = lightgbm.train(params, train_set=train_data, verbose=-1)
563
+ params = {
564
+ "device": "cuda",
565
+ "verbose": -1,
566
+ }
567
+ gbm = lightgbm.train(params, num_boost_round=10, train_set=train_data)
529
568
  return True
530
569
  except Exception as e:
531
570
  return False
@@ -534,7 +573,7 @@ class LGBModel(AbstractModel):
534
573
  minimum_resources = {
535
574
  "num_cpus": 1,
536
575
  }
537
- if is_gpu_available and self._is_gpu_lgbm_installed():
576
+ if is_gpu_available:
538
577
  minimum_resources["num_gpus"] = 0.5
539
578
  return minimum_resources
540
579
 
@@ -322,6 +322,10 @@ class LinearModel(AbstractModel):
322
322
  ) -> int:
323
323
  return 4 * get_approximate_df_mem_usage(X).sum()
324
324
 
325
+ def _get_maximum_resources(self) -> dict[str, int | float]:
326
+ # no GPU support
327
+ return {"num_gpus": 0}
328
+
325
329
  @classmethod
326
330
  def supported_problem_types(cls) -> list[str] | None:
327
331
  return ["binary", "multiclass", "regression"]
@@ -370,6 +370,10 @@ class RFModel(AbstractModel):
370
370
 
371
371
  return self._convert_proba_to_unified_form(y_oof_pred_proba)
372
372
 
373
+ def _get_maximum_resources(self) -> dict[str, int | float]:
374
+ # no GPU support
375
+ return {"num_gpus": 0}
376
+
373
377
  def _get_default_auxiliary_params(self) -> dict:
374
378
  default_auxiliary_params = super()._get_default_auxiliary_params()
375
379
  extra_auxiliary_params = dict(
@@ -186,12 +186,18 @@ class XGBoostModel(AbstractModel):
186
186
  from xgboost import XGBClassifier, XGBRegressor
187
187
 
188
188
  model_type = XGBClassifier if self.problem_type in PROBLEM_TYPES_CLASSIFICATION else XGBRegressor
189
- self.model = model_type(**params)
189
+
190
190
  import warnings
191
191
 
192
192
  with warnings.catch_warnings():
193
193
  # FIXME: v1.1: Upgrade XGBoost to 2.0.1+ to avoid deprecation warnings from Pandas 2.1+ during XGBoost fit.
194
194
  warnings.simplefilter(action="ignore", category=FutureWarning)
195
+ if params.get("device", "cpu") == "cuda:0":
196
+ # verbosity=0 to hide UserWarning: Falling back to prediction using DMatrix due to mismatched devices.
197
+ # TODO: Find a way to hide this warning without setting verbosity=0
198
+ # ref: https://github.com/dmlc/xgboost/issues/9791
199
+ params["verbosity"] = 0
200
+ self.model = model_type(**params)
195
201
  self.model.fit(X=X, y=y, eval_set=eval_set, verbose=False, sample_weight=sample_weight)
196
202
 
197
203
  if generate_curves:
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250909"
3
+ __version__ = "1.4.1b20251006"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20250909
3
+ Version: 1.4.1b20251006
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,23 +41,23 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.4.1b20250909
45
- Requires-Dist: autogluon.features==1.4.1b20250909
44
+ Requires-Dist: autogluon.core==1.4.1b20251006
45
+ Requires-Dist: autogluon.features==1.4.1b20251006
46
46
  Provides-Extra: all
47
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
48
- Requires-Dist: transformers; extra == "all"
49
- Requires-Dist: huggingface-hub[torch]; extra == "all"
50
- Requires-Dist: spacy<3.9; extra == "all"
47
+ Requires-Dist: autogluon.core[all]==1.4.1b20251006; extra == "all"
48
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
51
49
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
52
- Requires-Dist: einx; extra == "all"
53
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
54
- Requires-Dist: omegaconf; extra == "all"
55
- Requires-Dist: autogluon.core[all]==1.4.1b20250909; extra == "all"
56
50
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
57
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
51
+ Requires-Dist: loguru; extra == "all"
52
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
58
53
  Requires-Dist: torch<2.8,>=2.6; extra == "all"
54
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
55
+ Requires-Dist: omegaconf; extra == "all"
56
+ Requires-Dist: spacy<3.9; extra == "all"
57
+ Requires-Dist: transformers; extra == "all"
58
+ Requires-Dist: einx; extra == "all"
59
59
  Requires-Dist: einops<0.9,>=0.7; extra == "all"
60
- Requires-Dist: loguru; extra == "all"
60
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
61
61
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
62
62
  Provides-Extra: catboost
63
63
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
@@ -82,7 +82,7 @@ Requires-Dist: transformers; extra == "mitra"
82
82
  Requires-Dist: huggingface-hub[torch]; extra == "mitra"
83
83
  Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
84
84
  Provides-Extra: ray
85
- Requires-Dist: autogluon.core[all]==1.4.1b20250909; extra == "ray"
85
+ Requires-Dist: autogluon.core[all]==1.4.1b20251006; extra == "ray"
86
86
  Provides-Extra: realmlp
87
87
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
88
88
  Provides-Extra: skex
@@ -94,24 +94,24 @@ Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
94
94
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
95
95
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
96
96
  Provides-Extra: tabarena
97
- Requires-Dist: spacy<3.9; extra == "tabarena"
98
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
99
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
100
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
101
- Requires-Dist: einx; extra == "tabarena"
102
- Requires-Dist: autogluon.core[all]==1.4.1b20250909; extra == "tabarena"
97
+ Requires-Dist: autogluon.core[all]==1.4.1b20251006; extra == "tabarena"
103
98
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
104
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
99
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
100
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
105
101
  Requires-Dist: omegaconf; extra == "tabarena"
106
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
107
- Requires-Dist: transformers; extra == "tabarena"
108
- Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
102
+ Requires-Dist: spacy<3.9; extra == "tabarena"
103
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
109
104
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
105
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
106
+ Requires-Dist: einx; extra == "tabarena"
107
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
110
108
  Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
111
109
  Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
110
+ Requires-Dist: transformers; extra == "tabarena"
112
111
  Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
113
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
114
112
  Requires-Dist: loguru; extra == "tabarena"
113
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
114
+ Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
115
115
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
116
116
  Provides-Extra: tabicl
117
117
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.4.1b20250909-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.1b20251006-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=CoI0Yw3VeHPUf6neHJv5H4eowyyPeQaCa39gD8Ez1B0,91
3
+ autogluon/tabular/version.py,sha256=vVZUVsC-_j3dHtfP4Mqpe1c8X8CyPCQYUAA3dkds0UQ,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -27,7 +27,7 @@ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB
27
27
  autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
28
28
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
30
- autogluon/tabular/models/catboost/catboost_model.py,sha256=mcNL00envms32XqbGXr3dMujMIdx9lC4U3F_XkO8ru8,18150
30
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=xDL5x4YG7BI79LbfCVdJz1IGLbMWdgNtnpL5TzCYHaA,18214
31
31
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
32
32
  autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
33
33
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -57,18 +57,18 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
57
57
  autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
58
58
  autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
59
  autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
60
- autogluon/tabular/models/knn/knn_model.py,sha256=o_AsOduOGI9XM4GNNAFNUBgDIqCrAcPMawTX2s71UtA,13992
60
+ autogluon/tabular/models/knn/knn_model.py,sha256=I7wPRy38oD03f_3KN7Q_CyoJJucDPrPQyJqjgovmx8Q,14061
61
61
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
62
62
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
63
63
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
64
  autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
65
- autogluon/tabular/models/lgb/lgb_model.py,sha256=fVxDtzmEG2hEBQpAIUcfxQjy54PTgX5djg2XTa_y1eI,26072
65
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=UWkBeVkEvOXgKaZCRILyMyC8NfnA1UA3t-wuvWYy8pY,27677
66
66
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
67
67
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
69
69
  autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
70
70
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/lr/lr_model.py,sha256=9qoGwrIsnayXCp6OcuzSUSe3uiP21diQBjGFU-2vdJE,15765
71
+ autogluon/tabular/models/lr/lr_model.py,sha256=o4DM6-EvFolh6QNmInWwn7_0h1itbTAT38o0cVBRmCc,15886
72
72
  autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
73
73
  autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
74
74
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -103,7 +103,7 @@ autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNA
103
103
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
104
  autogluon/tabular/models/realmlp/realmlp_model.py,sha256=ASplFpuDmzm-PMjaG_V7swhAgcowr5qYZo8QcsHDltA,14740
105
105
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
- autogluon/tabular/models/rf/rf_model.py,sha256=wS2tFehnACoP_ZKsTqaLuLaAlL6E1IDOMNAi0MbX6Yo,21796
106
+ autogluon/tabular/models/rf/rf_model.py,sha256=c6Ec-qCxWN-6IlllBj2Cp0qV9m95B8Ai6Ft2MOpW2AM,21917
107
107
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
108
108
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
109
109
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -170,7 +170,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
170
170
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
171
171
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
172
172
  autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
173
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=L9C1EVtWp2Rfx2NSq2KmCQ0uTr80H7x-DpQsaS406EE,15424
173
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=xzfvUKqmlv87n8I92D2QWH9EnCNQ3AKsOrlOEtrsdco,15796
174
174
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
175
175
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
176
176
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
@@ -195,11 +195,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
195
195
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
196
196
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
197
197
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
198
- autogluon.tabular-1.4.1b20250909.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
199
- autogluon.tabular-1.4.1b20250909.dist-info/METADATA,sha256=2B2nsY-Zj-K-gPAGkk-Si-TBV_Hps8VZbEUdXV8ucSA,16451
200
- autogluon.tabular-1.4.1b20250909.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
201
- autogluon.tabular-1.4.1b20250909.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
202
- autogluon.tabular-1.4.1b20250909.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
203
- autogluon.tabular-1.4.1b20250909.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
204
- autogluon.tabular-1.4.1b20250909.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
205
- autogluon.tabular-1.4.1b20250909.dist-info/RECORD,,
198
+ autogluon.tabular-1.4.1b20251006.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
199
+ autogluon.tabular-1.4.1b20251006.dist-info/METADATA,sha256=q0tY9w1D1oFzekDjODz7GsYkxnnfdYtc3KyYNAfTMzw,16451
200
+ autogluon.tabular-1.4.1b20251006.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
201
+ autogluon.tabular-1.4.1b20251006.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
202
+ autogluon.tabular-1.4.1b20251006.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
203
+ autogluon.tabular-1.4.1b20251006.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
204
+ autogluon.tabular-1.4.1b20251006.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
205
+ autogluon.tabular-1.4.1b20251006.dist-info/RECORD,,