autogluon.tabular 1.4.1b20250818__py3-none-any.whl → 1.4.1b20250820__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -218,6 +218,31 @@ class MitraModel(AbstractModel):
218
218
  model._weights_saved = False
219
219
  return model
220
220
 
221
+ @classmethod
222
+ def download_weights(cls, repo_id: str):
223
+ """
224
+ Download weights for Mitra from HuggingFace from `repo_id`.
225
+ Requires an internet connection.
226
+ """
227
+ from huggingface_hub import hf_hub_download
228
+ hf_hub_download(repo_id=repo_id, filename="config.json")
229
+ hf_hub_download(repo_id=repo_id, filename="model.safetensors")
230
+
231
+ @classmethod
232
+ def download_default_weights(cls):
233
+ """
234
+ Download default weights for Mitra from HuggingFace.
235
+ Includes both classifier and regressor weights.
236
+
237
+ This is useful to call when building a docker image to avoid having to download Mitra weights for each instance.
238
+ This is also useful for benchmarking as a first sanity check
239
+ to avoid HuggingFace potentially blocking the download.
240
+
241
+ Requires an internet connection.
242
+ """
243
+ cls.download_weights(repo_id="autogluon/mitra-classifier")
244
+ cls.download_weights(repo_id="autogluon/mitra-regressor")
245
+
221
246
  @classmethod
222
247
  def supported_problem_types(cls) -> Optional[List[str]]:
223
248
  return ["binary", "multiclass", "regression"]
@@ -165,6 +165,10 @@ class TabularPredictor:
165
165
  trainer_type : AbstractTabularTrainer, default = AutoTrainer
166
166
  A class inheriting from `AbstractTabularTrainer` that controls training/ensembling of many models.
167
167
  If you don't know what this is, keep it as the default.
168
+ default_base_path : str | Path | None, default = None
169
+ A default base path to use for the time-stamped folder if `path` is None.
170
+ If None, defaults to `AutogluonModels`. Only used if `path` is None, and thus
171
+ only used for local paths, not s3 paths.
168
172
  """
169
173
 
170
174
  Dataset = TabularDataset
@@ -201,7 +205,7 @@ class TabularPredictor:
201
205
  f"We do not recommend specifying weight_evaluation when sample_weight='{self.sample_weight}', instead specify appropriate eval_metric."
202
206
  )
203
207
  self._validate_init_kwargs(kwargs)
204
- path = setup_outputdir(path)
208
+ path = setup_outputdir(path=path, default_base_path=kwargs.get("default_base_path"))
205
209
 
206
210
  learner_type = kwargs.get("learner_type", DefaultLearner)
207
211
  learner_kwargs = kwargs.get("learner_kwargs", dict())
@@ -5061,6 +5065,7 @@ class TabularPredictor:
5061
5065
  "learner_type",
5062
5066
  "learner_kwargs",
5063
5067
  "quantile_levels",
5068
+ "default_base_path",
5064
5069
  }
5065
5070
  invalid_keys = []
5066
5071
  for key in kwargs:
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250818"
3
+ __version__ = "1.4.1b20250820"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20250818
3
+ Version: 1.4.1b20250820
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,23 +41,23 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.4.1b20250818
45
- Requires-Dist: autogluon.features==1.4.1b20250818
44
+ Requires-Dist: autogluon.core==1.4.1b20250820
45
+ Requires-Dist: autogluon.features==1.4.1b20250820
46
46
  Provides-Extra: all
47
- Requires-Dist: torch<2.8,>=2.6; extra == "all"
48
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
47
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
49
48
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
50
49
  Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
52
- Requires-Dist: einx; extra == "all"
53
- Requires-Dist: transformers; extra == "all"
50
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
51
+ Requires-Dist: spacy<3.9; extra == "all"
54
52
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
53
+ Requires-Dist: einx; extra == "all"
55
54
  Requires-Dist: huggingface-hub[torch]; extra == "all"
55
+ Requires-Dist: transformers; extra == "all"
56
+ Requires-Dist: omegaconf; extra == "all"
56
57
  Requires-Dist: loguru; extra == "all"
57
- Requires-Dist: spacy<3.9; extra == "all"
58
- Requires-Dist: autogluon.core[all]==1.4.1b20250818; extra == "all"
58
+ Requires-Dist: autogluon.core[all]==1.4.1b20250820; extra == "all"
59
59
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
60
- Requires-Dist: omegaconf; extra == "all"
60
+ Requires-Dist: torch<2.8,>=2.6; extra == "all"
61
61
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
62
62
  Provides-Extra: catboost
63
63
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
@@ -80,7 +80,7 @@ Requires-Dist: transformers; extra == "mitra"
80
80
  Requires-Dist: huggingface-hub[torch]; extra == "mitra"
81
81
  Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
82
82
  Provides-Extra: ray
83
- Requires-Dist: autogluon.core[all]==1.4.1b20250818; extra == "ray"
83
+ Requires-Dist: autogluon.core[all]==1.4.1b20250820; extra == "ray"
84
84
  Provides-Extra: realmlp
85
85
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
86
86
  Provides-Extra: skex
@@ -92,23 +92,23 @@ Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
92
92
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
93
93
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
94
94
  Provides-Extra: tabarena
95
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
96
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
97
- Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
98
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
99
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
95
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
100
96
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
101
- Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
102
97
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
103
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
98
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
99
+ Requires-Dist: spacy<3.9; extra == "tabarena"
100
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
104
101
  Requires-Dist: einx; extra == "tabarena"
102
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
103
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
105
104
  Requires-Dist: transformers; extra == "tabarena"
106
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
105
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
106
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
107
+ Requires-Dist: omegaconf; extra == "tabarena"
107
108
  Requires-Dist: loguru; extra == "tabarena"
108
- Requires-Dist: spacy<3.9; extra == "tabarena"
109
- Requires-Dist: autogluon.core[all]==1.4.1b20250818; extra == "tabarena"
109
+ Requires-Dist: autogluon.core[all]==1.4.1b20250820; extra == "tabarena"
110
110
  Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
111
- Requires-Dist: omegaconf; extra == "tabarena"
111
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
112
112
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
113
113
  Provides-Extra: tabicl
114
114
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.4.1b20250818-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.1b20250820-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=gfOGF027svt-J46kXd4_hPGSL8Tf07_cRlCOodxTxVM,91
3
+ autogluon/tabular/version.py,sha256=S2ZZQJcoKT498Nmq-Gu28zMiZsIYa6iD670boLDdwfg,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -69,7 +69,7 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
69
69
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
70
70
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
71
71
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
- autogluon/tabular/models/mitra/mitra_model.py,sha256=9c0qwFnKl5WgdSuMMjluGKCSh0BePWT9_RWPtVb7Rcc,12435
72
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=lHcOtaQwIy4EpgK4TAiuRqQQFhBN3NzSdejFjkNpZPg,13447
73
73
  autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
74
74
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
75
75
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
@@ -173,7 +173,7 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
173
173
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
174
174
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
175
175
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
176
- autogluon/tabular/predictor/predictor.py,sha256=akgjBQMpyuuvxSGDhaTccJmYhqA8dKYFKNmn88c8VIg,360587
176
+ autogluon/tabular/predictor/predictor.py,sha256=CRP98NWyRnWYHjvWpqSpfWo3CX5j170M6GXXe2lDw-g,360967
177
177
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
178
178
  autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
179
179
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
@@ -189,11 +189,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
189
189
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
190
190
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
191
191
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
192
- autogluon.tabular-1.4.1b20250818.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
- autogluon.tabular-1.4.1b20250818.dist-info/METADATA,sha256=esQVnuXwDNKk-UqUNeTGwM8RL9gjRCokDnOi5bgUYz0,16238
194
- autogluon.tabular-1.4.1b20250818.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
- autogluon.tabular-1.4.1b20250818.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
- autogluon.tabular-1.4.1b20250818.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.4.1b20250818.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
- autogluon.tabular-1.4.1b20250818.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
- autogluon.tabular-1.4.1b20250818.dist-info/RECORD,,
192
+ autogluon.tabular-1.4.1b20250820.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
+ autogluon.tabular-1.4.1b20250820.dist-info/METADATA,sha256=oxY-iF3arfj3QFp_5xjlbckx6lVKwN-yDcncp2EJUxo,16238
194
+ autogluon.tabular-1.4.1b20250820.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
+ autogluon.tabular-1.4.1b20250820.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
+ autogluon.tabular-1.4.1b20250820.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.4.1b20250820.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
+ autogluon.tabular-1.4.1b20250820.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
+ autogluon.tabular-1.4.1b20250820.dist-info/RECORD,,