autogluon.tabular 1.4.1b20250801__py3-none-any.whl → 1.4.1b20250802__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/models/catboost/catboost_model.py +5 -1
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +2 -2
- autogluon/tabular/models/knn/knn_model.py +1 -1
- autogluon/tabular/models/lgb/lgb_model.py +9 -3
- autogluon/tabular/models/lr/lr_model.py +5 -2
- autogluon/tabular/models/mitra/mitra_model.py +4 -0
- autogluon/tabular/models/realmlp/realmlp_model.py +4 -2
- autogluon/tabular/models/rf/rf_model.py +4 -2
- autogluon/tabular/models/tabicl/tabicl_model.py +3 -6
- autogluon/tabular/models/tabm/tabm_model.py +3 -6
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +3 -3
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +4 -1
- autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +1 -3
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +4 -1
- autogluon/tabular/models/xgboost/xgboost_model.py +4 -0
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/METADATA +26 -26
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/RECORD +25 -25
- /autogluon.tabular-1.4.1b20250801-py3.9-nspkg.pth → /autogluon.tabular-1.4.1b20250802-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/zip-safe +0 -0
|
@@ -48,7 +48,6 @@ class CatBoostModel(AbstractModel):
|
|
|
48
48
|
default_params = get_param_baseline(problem_type=self.problem_type)
|
|
49
49
|
for param, val in default_params.items():
|
|
50
50
|
self._set_default_param_value(param, val)
|
|
51
|
-
self._set_default_param_value("random_seed", 0) # Remove randomness for reproducibility
|
|
52
51
|
# Set 'allow_writing_files' to True in order to keep log files created by catboost during training (these will be saved in the directory where AutoGluon stores this model)
|
|
53
52
|
self._set_default_param_value("allow_writing_files", False) # Disables creation of catboost logging files during training by default
|
|
54
53
|
if self.problem_type != SOFTCLASS: # TODO: remove this after catboost 0.24
|
|
@@ -117,6 +116,9 @@ class CatBoostModel(AbstractModel):
|
|
|
117
116
|
approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + baseline_memory_bytes
|
|
118
117
|
return approx_mem_size_req
|
|
119
118
|
|
|
119
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
120
|
+
return hyperparameters.get("random_seed", "N/A")
|
|
121
|
+
|
|
120
122
|
# TODO: Use Pool in preprocess, optimize bagging to do Pool.split() to avoid re-computing pool for each fold! Requires stateful + y
|
|
121
123
|
# Pool is much more memory efficient, avoids copying data twice in memory
|
|
122
124
|
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=-1, sample_weight=None, sample_weight_val=None, **kwargs):
|
|
@@ -126,6 +128,8 @@ class CatBoostModel(AbstractModel):
|
|
|
126
128
|
|
|
127
129
|
ag_params = self._get_ag_params()
|
|
128
130
|
params = self._get_model_params()
|
|
131
|
+
params["random_seed"] = self.random_seed
|
|
132
|
+
|
|
129
133
|
params["thread_count"] = num_cpus
|
|
130
134
|
if self.problem_type == SOFTCLASS:
|
|
131
135
|
# FIXME: This is extremely slow due to unoptimized metric / objective sent to CatBoost
|
|
@@ -322,8 +322,8 @@ class NNFastAiTabularModel(AbstractModel):
|
|
|
322
322
|
# Make deterministic
|
|
323
323
|
from fastai.torch_core import set_seed
|
|
324
324
|
|
|
325
|
-
set_seed(
|
|
326
|
-
dls.rng.seed(
|
|
325
|
+
set_seed(self.random_seed, True)
|
|
326
|
+
dls.rng.seed(self.random_seed)
|
|
327
327
|
|
|
328
328
|
if self.problem_type == QUANTILE:
|
|
329
329
|
dls.c = len(self.quantile_levels)
|
|
@@ -214,7 +214,7 @@ class KNNModel(AbstractModel):
|
|
|
214
214
|
def sample_func(chunk, frac):
|
|
215
215
|
# Guarantee at least 1 sample (otherwise log_loss would crash or model would return different column counts in pred_proba)
|
|
216
216
|
n = max(math.ceil(len(chunk) * frac), 1)
|
|
217
|
-
return chunk.sample(n=n, replace=False, random_state=
|
|
217
|
+
return chunk.sample(n=n, replace=False, random_state=self.random_seed)
|
|
218
218
|
|
|
219
219
|
if self.problem_type != REGRESSION:
|
|
220
220
|
y_df = y.to_frame(name="label").reset_index(drop=True)
|
|
@@ -128,6 +128,13 @@ class LGBModel(AbstractModel):
|
|
|
128
128
|
approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + mem_size_estimators
|
|
129
129
|
return approx_mem_size_req
|
|
130
130
|
|
|
131
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
132
|
+
if "seed_value" in hyperparameters:
|
|
133
|
+
return hyperparameters["seed_value"]
|
|
134
|
+
if "seed" in hyperparameters:
|
|
135
|
+
return hyperparameters["seed"]
|
|
136
|
+
return "N/A"
|
|
137
|
+
|
|
131
138
|
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=0, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
|
|
132
139
|
try_import_lightgbm() # raise helpful error message if LightGBM isn't installed
|
|
133
140
|
start_time = time.time()
|
|
@@ -225,7 +232,6 @@ class LGBModel(AbstractModel):
|
|
|
225
232
|
if log_period is not None:
|
|
226
233
|
callbacks.append(log_evaluation(period=log_period))
|
|
227
234
|
|
|
228
|
-
seed_val = params.pop("seed_value", 0)
|
|
229
235
|
train_params = {
|
|
230
236
|
"params": params,
|
|
231
237
|
"train_set": dataset_train,
|
|
@@ -285,8 +291,8 @@ class LGBModel(AbstractModel):
|
|
|
285
291
|
train_params["params"]["num_classes"] = self.num_classes
|
|
286
292
|
elif self.problem_type == QUANTILE:
|
|
287
293
|
train_params["params"]["quantile_levels"] = self.quantile_levels
|
|
288
|
-
|
|
289
|
-
|
|
294
|
+
|
|
295
|
+
train_params["params"]["seed"] = self.random_seed
|
|
290
296
|
|
|
291
297
|
# Train LightGBM model:
|
|
292
298
|
# Note that self.model contains a <class 'lightgbm.basic.Booster'> not a LightBGMClassifier or LightGBMRegressor object
|
|
@@ -155,13 +155,16 @@ class LinearModel(AbstractModel):
|
|
|
155
155
|
return self._pipeline.fit_transform(X)
|
|
156
156
|
|
|
157
157
|
def _set_default_params(self):
|
|
158
|
-
default_params = {"
|
|
158
|
+
default_params = {"fit_intercept": True}
|
|
159
159
|
if self.problem_type != REGRESSION:
|
|
160
160
|
default_params.update({"solver": _get_solver(self.problem_type)})
|
|
161
161
|
default_params.update(get_param_baseline())
|
|
162
162
|
for param, val in default_params.items():
|
|
163
163
|
self._set_default_param_value(param, val)
|
|
164
164
|
|
|
165
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
166
|
+
return hyperparameters.get("random_seed", "N/A")
|
|
167
|
+
|
|
165
168
|
def _get_default_searchspace(self):
|
|
166
169
|
return get_default_searchspace(self.problem_type)
|
|
167
170
|
|
|
@@ -215,7 +218,7 @@ class LinearModel(AbstractModel):
|
|
|
215
218
|
total_iter = 0
|
|
216
219
|
total_iter_used = 0
|
|
217
220
|
total_max_iter = sum(max_iter_list)
|
|
218
|
-
model = model_cls(max_iter=max_iter_list[0], **params)
|
|
221
|
+
model = model_cls(max_iter=max_iter_list[0], random_state=self.random_seed, **params)
|
|
219
222
|
early_stop = False
|
|
220
223
|
for i, cur_max_iter in enumerate(max_iter_list):
|
|
221
224
|
if time_left is not None and (i > 0):
|
|
@@ -77,6 +77,9 @@ class MitraModel(AbstractModel):
|
|
|
77
77
|
|
|
78
78
|
return X
|
|
79
79
|
|
|
80
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
81
|
+
return hyperparameters.get("seed", "N/A")
|
|
82
|
+
|
|
80
83
|
def _fit(
|
|
81
84
|
self,
|
|
82
85
|
X: pd.DataFrame,
|
|
@@ -139,6 +142,7 @@ class MitraModel(AbstractModel):
|
|
|
139
142
|
hyp["verbose"] = verbosity >= 3
|
|
140
143
|
|
|
141
144
|
self.model = model_cls(
|
|
145
|
+
seed=self.random_seed,
|
|
142
146
|
**hyp,
|
|
143
147
|
)
|
|
144
148
|
|
|
@@ -82,6 +82,9 @@ class RealMLPModel(AbstractModel):
|
|
|
82
82
|
model_cls = RealMLP_TD_S_Regressor
|
|
83
83
|
return model_cls
|
|
84
84
|
|
|
85
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
86
|
+
return hyperparameters.get("random_state", "N/A")
|
|
87
|
+
|
|
85
88
|
def _fit(
|
|
86
89
|
self,
|
|
87
90
|
X: pd.DataFrame,
|
|
@@ -175,6 +178,7 @@ class RealMLPModel(AbstractModel):
|
|
|
175
178
|
self.model = model_cls(
|
|
176
179
|
n_threads=num_cpus,
|
|
177
180
|
device=device,
|
|
181
|
+
random_state=self.random_seed,
|
|
178
182
|
**init_kwargs,
|
|
179
183
|
**hyp,
|
|
180
184
|
)
|
|
@@ -243,8 +247,6 @@ class RealMLPModel(AbstractModel):
|
|
|
243
247
|
|
|
244
248
|
def _set_default_params(self):
|
|
245
249
|
default_params = dict(
|
|
246
|
-
random_state=0,
|
|
247
|
-
|
|
248
250
|
# Don't use early stopping by default, seems to work well without
|
|
249
251
|
use_early_stopping=False,
|
|
250
252
|
early_stopping_additive_patience=40,
|
|
@@ -97,7 +97,6 @@ class RFModel(AbstractModel):
|
|
|
97
97
|
# This size scales linearly with number of rows.
|
|
98
98
|
"max_leaf_nodes": 15000,
|
|
99
99
|
"n_jobs": -1,
|
|
100
|
-
"random_state": 0,
|
|
101
100
|
"bootstrap": True, # Required for OOB estimates, setting to False will raise exception if bagging.
|
|
102
101
|
# TODO: min_samples_leaf=5 is too large on most problems, however on some datasets it helps a lot (airlines likes >40 min_samples_leaf, adult likes 2 much better than 1)
|
|
103
102
|
# This value would need to be tuned per dataset, likely very worthwhile.
|
|
@@ -108,6 +107,9 @@ class RFModel(AbstractModel):
|
|
|
108
107
|
for param, val in default_params.items():
|
|
109
108
|
self._set_default_param_value(param, val)
|
|
110
109
|
|
|
110
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
111
|
+
return hyperparameters.get("random_state", "N/A")
|
|
112
|
+
|
|
111
113
|
# TODO: Add in documentation that Categorical default is the first index
|
|
112
114
|
# TODO: enable HPO for RF models
|
|
113
115
|
def _get_default_searchspace(self):
|
|
@@ -206,7 +208,7 @@ class RFModel(AbstractModel):
|
|
|
206
208
|
# FIXME: This is inefficient but sklearnex doesn't support computing oob_score after training
|
|
207
209
|
params["oob_score"] = True
|
|
208
210
|
|
|
209
|
-
model = model_cls(**params)
|
|
211
|
+
model = model_cls(random_state=self.random_seed, **params)
|
|
210
212
|
|
|
211
213
|
time_train_start = time.time()
|
|
212
214
|
for i, n_estimators in enumerate(n_estimator_increments):
|
|
@@ -89,6 +89,7 @@ class TabICLModel(AbstractModel):
|
|
|
89
89
|
**hyp,
|
|
90
90
|
device=device,
|
|
91
91
|
n_jobs=num_cpus,
|
|
92
|
+
random_state=self.random_seed,
|
|
92
93
|
)
|
|
93
94
|
X = self.preprocess(X)
|
|
94
95
|
self.model = self.model.fit(
|
|
@@ -96,12 +97,8 @@ class TabICLModel(AbstractModel):
|
|
|
96
97
|
y=y,
|
|
97
98
|
)
|
|
98
99
|
|
|
99
|
-
def
|
|
100
|
-
|
|
101
|
-
"random_state": 42,
|
|
102
|
-
}
|
|
103
|
-
for param, val in default_params.items():
|
|
104
|
-
self._set_default_param_value(param, val)
|
|
100
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
101
|
+
return hyperparameters.get("random_state", "N/A")
|
|
105
102
|
|
|
106
103
|
def _get_default_auxiliary_params(self) -> dict:
|
|
107
104
|
default_auxiliary_params = super()._get_default_auxiliary_params()
|
|
@@ -106,6 +106,7 @@ class TabMModel(AbstractModel):
|
|
|
106
106
|
device=device,
|
|
107
107
|
problem_type=self.problem_type,
|
|
108
108
|
early_stopping_metric=self.stopping_metric,
|
|
109
|
+
random_state=self.random_seed,
|
|
109
110
|
**hyp,
|
|
110
111
|
)
|
|
111
112
|
|
|
@@ -141,12 +142,8 @@ class TabMModel(AbstractModel):
|
|
|
141
142
|
|
|
142
143
|
return X
|
|
143
144
|
|
|
144
|
-
def
|
|
145
|
-
|
|
146
|
-
random_state=0,
|
|
147
|
-
)
|
|
148
|
-
for param, val in default_params.items():
|
|
149
|
-
self._set_default_param_value(param, val)
|
|
145
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
146
|
+
return hyperparameters.get("random_state", "N/A")
|
|
150
147
|
|
|
151
148
|
@classmethod
|
|
152
149
|
def supported_problem_types(cls) -> list[str] | None:
|
|
@@ -178,7 +178,7 @@ class TabPFNMixModel(AbstractModel):
|
|
|
178
178
|
elif weights_path is not None:
|
|
179
179
|
logger.log(15, f'\tLoading pre-trained weights from file... (weights_path="{weights_path}")')
|
|
180
180
|
|
|
181
|
-
cfg = ConfigRun(hyperparams=params, task=task, device=device)
|
|
181
|
+
cfg = ConfigRun(hyperparams=params, task=task, device=device, seed=self.random_seed)
|
|
182
182
|
|
|
183
183
|
if cfg.hyperparams["max_epochs"] == 0 and cfg.hyperparams["n_ensembles"] != 1:
|
|
184
184
|
logger.log(
|
|
@@ -242,14 +242,14 @@ class TabPFNMixModel(AbstractModel):
|
|
|
242
242
|
return self
|
|
243
243
|
|
|
244
244
|
# TODO: Make this generic by creating a generic `preprocess_train` and putting this logic prior to `_preprocess`.
|
|
245
|
-
def _subsample_data(self, X: pd.DataFrame, y: pd.Series, num_rows: int
|
|
245
|
+
def _subsample_data(self, X: pd.DataFrame, y: pd.Series, num_rows: int) -> (pd.DataFrame, pd.Series):
|
|
246
246
|
num_rows_to_drop = len(X) - num_rows
|
|
247
247
|
X, _, y, _ = generate_train_test_split(
|
|
248
248
|
X=X,
|
|
249
249
|
y=y,
|
|
250
250
|
problem_type=self.problem_type,
|
|
251
251
|
test_size=num_rows_to_drop,
|
|
252
|
-
random_state=
|
|
252
|
+
random_state=self.random_seed,
|
|
253
253
|
min_cls_count_train=1,
|
|
254
254
|
)
|
|
255
255
|
return X, y
|
|
@@ -201,6 +201,7 @@ class TabPFNV2Model(AbstractModel):
|
|
|
201
201
|
X = self.preprocess(X, is_train=True)
|
|
202
202
|
|
|
203
203
|
hps = self._get_model_params()
|
|
204
|
+
hps["random_state"] = self.random_seed
|
|
204
205
|
hps["device"] = device
|
|
205
206
|
hps["n_jobs"] = num_cpus
|
|
206
207
|
hps["categorical_features_indices"] = self._cat_indices
|
|
@@ -300,12 +301,14 @@ class TabPFNV2Model(AbstractModel):
|
|
|
300
301
|
|
|
301
302
|
def _set_default_params(self):
|
|
302
303
|
default_params = {
|
|
303
|
-
"random_state": 42,
|
|
304
304
|
"ignore_pretraining_limits": True, # to ignore warnings and size limits
|
|
305
305
|
}
|
|
306
306
|
for param, val in default_params.items():
|
|
307
307
|
self._set_default_param_value(param, val)
|
|
308
308
|
|
|
309
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
310
|
+
return hyperparameters.get("random_state", "N/A")
|
|
311
|
+
|
|
309
312
|
@classmethod
|
|
310
313
|
def supported_problem_types(cls) -> list[str] | None:
|
|
311
314
|
return ["binary", "multiclass", "regression"]
|
|
@@ -7,9 +7,7 @@ from autogluon.core.constants import BINARY, MULTICLASS, QUANTILE, REGRESSION
|
|
|
7
7
|
|
|
8
8
|
def get_fixed_params(framework):
|
|
9
9
|
"""Parameters that currently cannot be searched during HPO"""
|
|
10
|
-
fixed_params = {
|
|
11
|
-
# 'seed_value': 0, # random seed for reproducibility (set = None to ignore)
|
|
12
|
-
}
|
|
10
|
+
fixed_params = {}
|
|
13
11
|
# TODO: v1.2 Change default epochs_wo_improve to "auto", so that None can mean no early stopping.
|
|
14
12
|
pytorch_fixed_params = {
|
|
15
13
|
"num_epochs": 1000, # maximum number of epochs (passes over full dataset) for training NN
|
|
@@ -164,6 +164,9 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
|
164
164
|
|
|
165
165
|
return processor_kwargs, optimizer_kwargs, fit_kwargs, loss_kwargs, params
|
|
166
166
|
|
|
167
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
168
|
+
return hyperparameters.get("seed_value", "N/A")
|
|
169
|
+
|
|
167
170
|
def _fit(
|
|
168
171
|
self,
|
|
169
172
|
X: pd.DataFrame,
|
|
@@ -191,7 +194,7 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
|
191
194
|
|
|
192
195
|
processor_kwargs, optimizer_kwargs, fit_kwargs, loss_kwargs, params = self._prepare_params(params=params)
|
|
193
196
|
|
|
194
|
-
seed_value =
|
|
197
|
+
seed_value = self.random_seed
|
|
195
198
|
|
|
196
199
|
self._num_cpus_infer = params.pop("_num_cpus_infer", 1)
|
|
197
200
|
if seed_value is not None: # Set seeds
|
|
@@ -75,11 +75,15 @@ class XGBoostModel(AbstractModel):
|
|
|
75
75
|
|
|
76
76
|
return X
|
|
77
77
|
|
|
78
|
+
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
79
|
+
return hyperparameters.get("seed", "N/A")
|
|
80
|
+
|
|
78
81
|
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=None, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
|
|
79
82
|
# TODO: utilize sample_weight_val in early-stopping if provided
|
|
80
83
|
start_time = time.time()
|
|
81
84
|
ag_params = self._get_ag_params()
|
|
82
85
|
params = self._get_model_params()
|
|
86
|
+
params["seed"] = self.random_seed
|
|
83
87
|
generate_curves = ag_params.get("generate_curves", False)
|
|
84
88
|
|
|
85
89
|
if generate_curves:
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1b20250802
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -41,23 +41,23 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
41
41
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
42
42
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
|
44
|
-
Requires-Dist: autogluon.core==1.4.
|
|
45
|
-
Requires-Dist: autogluon.features==1.4.
|
|
44
|
+
Requires-Dist: autogluon.core==1.4.1b20250802
|
|
45
|
+
Requires-Dist: autogluon.features==1.4.1b20250802
|
|
46
46
|
Provides-Extra: all
|
|
47
|
-
Requires-Dist: torch<2.8,>=2.2; extra == "all"
|
|
48
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20250801; extra == "all"
|
|
49
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
|
50
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
51
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
52
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
53
|
-
Requires-Dist: loguru; extra == "all"
|
|
54
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
55
|
-
Requires-Dist: transformers; extra == "all"
|
|
56
|
-
Requires-Dist: einx; extra == "all"
|
|
57
47
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
58
|
-
Requires-Dist:
|
|
48
|
+
Requires-Dist: transformers; extra == "all"
|
|
59
49
|
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
|
60
50
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
51
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
52
|
+
Requires-Dist: einx; extra == "all"
|
|
53
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
54
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
55
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
56
|
+
Requires-Dist: loguru; extra == "all"
|
|
57
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
58
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
59
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20250802; extra == "all"
|
|
60
|
+
Requires-Dist: torch<2.8,>=2.2; extra == "all"
|
|
61
61
|
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
|
|
62
62
|
Provides-Extra: catboost
|
|
63
63
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
|
@@ -80,7 +80,7 @@ Requires-Dist: transformers; extra == "mitra"
|
|
|
80
80
|
Requires-Dist: huggingface-hub[torch]; extra == "mitra"
|
|
81
81
|
Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
82
82
|
Provides-Extra: ray
|
|
83
|
-
Requires-Dist: autogluon.core[all]==1.4.
|
|
83
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20250802; extra == "ray"
|
|
84
84
|
Provides-Extra: realmlp
|
|
85
85
|
Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
|
|
86
86
|
Provides-Extra: skex
|
|
@@ -92,23 +92,23 @@ Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
|
|
|
92
92
|
Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
|
|
93
93
|
Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
|
|
94
94
|
Provides-Extra: tabarena
|
|
95
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
96
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
97
|
+
Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
|
|
95
98
|
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
96
|
-
Requires-Dist:
|
|
97
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20250801; extra == "tabarena"
|
|
98
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
99
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
100
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
101
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
102
|
-
Requires-Dist: loguru; extra == "tabarena"
|
|
99
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
103
100
|
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
104
|
-
Requires-Dist: transformers; extra == "tabarena"
|
|
105
101
|
Requires-Dist: einx; extra == "tabarena"
|
|
106
|
-
Requires-Dist:
|
|
102
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
107
103
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
108
|
-
Requires-Dist:
|
|
109
|
-
Requires-Dist:
|
|
104
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
105
|
+
Requires-Dist: loguru; extra == "tabarena"
|
|
106
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
107
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
110
108
|
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
109
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20250802; extra == "tabarena"
|
|
111
110
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
111
|
+
Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
|
|
112
112
|
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
|
|
113
113
|
Provides-Extra: tabicl
|
|
114
114
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
{autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/RECORD
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
autogluon.tabular-1.4.
|
|
1
|
+
autogluon.tabular-1.4.1b20250802-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
|
3
|
-
autogluon/tabular/version.py,sha256=
|
|
3
|
+
autogluon/tabular/version.py,sha256=lAVRa1Y009vtbRq_mgNG9fMmMPrmSsp-wyzZSe2lbsg,91
|
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
|
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
|
@@ -26,7 +26,7 @@ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB
|
|
|
26
26
|
autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
|
|
27
27
|
autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
28
28
|
autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
|
|
29
|
-
autogluon/tabular/models/catboost/catboost_model.py,sha256=
|
|
29
|
+
autogluon/tabular/models/catboost/catboost_model.py,sha256=mcNL00envms32XqbGXr3dMujMIdx9lC4U3F_XkO8ru8,18150
|
|
30
30
|
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
|
|
31
31
|
autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
|
|
32
32
|
autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -37,7 +37,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
|
|
|
37
37
|
autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
|
|
38
38
|
autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
|
|
39
39
|
autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
|
|
40
|
-
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=
|
|
40
|
+
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=efy4BJr1DiurTTKh2ouYuujfwdY4c969XH314qeLwL8,29571
|
|
41
41
|
autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
42
|
autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
|
|
43
43
|
autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
|
|
@@ -51,25 +51,25 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
|
|
|
51
51
|
autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
|
|
52
52
|
autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
53
53
|
autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
|
|
54
|
-
autogluon/tabular/models/knn/knn_model.py,sha256=
|
|
54
|
+
autogluon/tabular/models/knn/knn_model.py,sha256=o_AsOduOGI9XM4GNNAFNUBgDIqCrAcPMawTX2s71UtA,13992
|
|
55
55
|
autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
|
|
56
56
|
autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
|
|
57
57
|
autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
58
58
|
autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
|
|
59
|
-
autogluon/tabular/models/lgb/lgb_model.py,sha256=
|
|
59
|
+
autogluon/tabular/models/lgb/lgb_model.py,sha256=fVxDtzmEG2hEBQpAIUcfxQjy54PTgX5djg2XTa_y1eI,26072
|
|
60
60
|
autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
|
|
61
61
|
autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
62
62
|
autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
|
|
63
63
|
autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
|
|
64
64
|
autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
65
|
-
autogluon/tabular/models/lr/lr_model.py,sha256=
|
|
65
|
+
autogluon/tabular/models/lr/lr_model.py,sha256=9qoGwrIsnayXCp6OcuzSUSe3uiP21diQBjGFU-2vdJE,15765
|
|
66
66
|
autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
|
|
67
67
|
autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
|
|
68
68
|
autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
69
69
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
|
70
70
|
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
|
|
71
71
|
autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
72
|
-
autogluon/tabular/models/mitra/mitra_model.py,sha256=
|
|
72
|
+
autogluon/tabular/models/mitra/mitra_model.py,sha256=9c0qwFnKl5WgdSuMMjluGKCSh0BePWT9_RWPtVb7Rcc,12435
|
|
73
73
|
autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
|
|
74
74
|
autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
|
|
75
75
|
autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
|
|
@@ -95,23 +95,23 @@ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=TorZsQR7LE5QRq2E
|
|
|
95
95
|
autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
|
|
96
96
|
autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
|
|
97
97
|
autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
98
|
-
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=
|
|
98
|
+
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=ASplFpuDmzm-PMjaG_V7swhAgcowr5qYZo8QcsHDltA,14740
|
|
99
99
|
autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
100
|
-
autogluon/tabular/models/rf/rf_model.py,sha256=
|
|
100
|
+
autogluon/tabular/models/rf/rf_model.py,sha256=wS2tFehnACoP_ZKsTqaLuLaAlL6E1IDOMNAi0MbX6Yo,21796
|
|
101
101
|
autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
|
|
102
102
|
autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
|
|
103
103
|
autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
104
104
|
autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
|
|
105
105
|
autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
|
|
106
106
|
autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
107
|
-
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=
|
|
107
|
+
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=fSn-7P6Eo2H74EBFHjnav38x9hQQRCT-0_I2_TsBidw,6450
|
|
108
108
|
autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
109
109
|
autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
|
|
110
110
|
autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
|
|
111
|
-
autogluon/tabular/models/tabm/tabm_model.py,sha256=
|
|
111
|
+
autogluon/tabular/models/tabm/tabm_model.py,sha256=LmCVrldOFC0mBuUhDx9vIHQ85bFXtv0YjOAqo14_0cA,10447
|
|
112
112
|
autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
|
|
113
113
|
autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
114
|
-
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=
|
|
114
|
+
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=2uc4O8r2UJBk2tYpZ_wI9v4kN2NIce46W96tm_HDO3w,16315
|
|
115
115
|
autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
116
116
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
|
|
117
117
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
|
|
@@ -137,7 +137,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
|
|
|
137
137
|
autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
138
138
|
autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
|
|
139
139
|
autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
140
|
-
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=
|
|
140
|
+
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=9HP8H2mhu9VihafICVnBQIYNyWVKZwO1T7tBzHEIZYU,14972
|
|
141
141
|
autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
|
|
142
142
|
autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
|
|
143
143
|
autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
|
|
@@ -150,10 +150,10 @@ autogluon/tabular/models/tabular_nn/compilers/__init__.py,sha256=47DEQpj8HBSa-_T
|
|
|
150
150
|
autogluon/tabular/models/tabular_nn/compilers/native.py,sha256=W8d8cqBj7U-KVhfGK3hdtGj8JJm3lXr_SecU0615Gbs,1330
|
|
151
151
|
autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=3mj9_5p6YMOuKbYk7FBQ2Ijhm1kGzfqq6cyyKLUKLOo,14804
|
|
152
152
|
autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
153
|
-
autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=
|
|
153
|
+
autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
|
|
154
154
|
autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
|
|
155
155
|
autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
156
|
-
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=
|
|
156
|
+
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=y_rijxQyvqjmMHXLmDDc-45E91We7c3iUWFuPtncGd0,43158
|
|
157
157
|
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
|
|
158
158
|
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
|
|
159
159
|
autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -164,7 +164,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
|
|
|
164
164
|
autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
|
|
165
165
|
autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
166
166
|
autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
|
|
167
|
-
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=
|
|
167
|
+
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=L9C1EVtWp2Rfx2NSq2KmCQ0uTr80H7x-DpQsaS406EE,15424
|
|
168
168
|
autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
|
|
169
169
|
autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
170
170
|
autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
|
|
@@ -189,11 +189,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
|
|
|
189
189
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
|
190
190
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
191
191
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
|
192
|
-
autogluon.tabular-1.4.
|
|
193
|
-
autogluon.tabular-1.4.
|
|
194
|
-
autogluon.tabular-1.4.
|
|
195
|
-
autogluon.tabular-1.4.
|
|
196
|
-
autogluon.tabular-1.4.
|
|
197
|
-
autogluon.tabular-1.4.
|
|
198
|
-
autogluon.tabular-1.4.
|
|
199
|
-
autogluon.tabular-1.4.
|
|
192
|
+
autogluon.tabular-1.4.1b20250802.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
193
|
+
autogluon.tabular-1.4.1b20250802.dist-info/METADATA,sha256=4ml4vSWla_QphmtqtixU3OMTXqZH3xHLzf_K7mtDtEg,16238
|
|
194
|
+
autogluon.tabular-1.4.1b20250802.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
195
|
+
autogluon.tabular-1.4.1b20250802.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
|
196
|
+
autogluon.tabular-1.4.1b20250802.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
197
|
+
autogluon.tabular-1.4.1b20250802.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
198
|
+
autogluon.tabular-1.4.1b20250802.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
199
|
+
autogluon.tabular-1.4.1b20250802.dist-info/RECORD,,
|
|
File without changes
|
{autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/LICENSE
RENAMED
|
File without changes
|
{autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/NOTICE
RENAMED
|
File without changes
|
{autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{autogluon.tabular-1.4.1b20250801.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/zip-safe
RENAMED
|
File without changes
|