autogluon.tabular 1.4.1b20250731__py3-none-any.whl → 1.4.1b20250802__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (25) hide show
  1. autogluon/tabular/models/catboost/catboost_model.py +5 -1
  2. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +2 -2
  3. autogluon/tabular/models/knn/knn_model.py +1 -1
  4. autogluon/tabular/models/lgb/lgb_model.py +9 -3
  5. autogluon/tabular/models/lr/lr_model.py +5 -2
  6. autogluon/tabular/models/mitra/mitra_model.py +4 -0
  7. autogluon/tabular/models/realmlp/realmlp_model.py +4 -2
  8. autogluon/tabular/models/rf/rf_model.py +4 -2
  9. autogluon/tabular/models/tabicl/tabicl_model.py +3 -6
  10. autogluon/tabular/models/tabm/tabm_model.py +3 -6
  11. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +3 -3
  12. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +4 -1
  13. autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +1 -3
  14. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +4 -1
  15. autogluon/tabular/models/xgboost/xgboost_model.py +4 -0
  16. autogluon/tabular/version.py +1 -1
  17. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/METADATA +25 -22
  18. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/RECORD +25 -25
  19. /autogluon.tabular-1.4.1b20250731-py3.9-nspkg.pth → /autogluon.tabular-1.4.1b20250802-py3.9-nspkg.pth +0 -0
  20. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/LICENSE +0 -0
  21. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/NOTICE +0 -0
  22. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/WHEEL +0 -0
  23. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/namespace_packages.txt +0 -0
  24. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/top_level.txt +0 -0
  25. {autogluon.tabular-1.4.1b20250731.dist-info → autogluon.tabular-1.4.1b20250802.dist-info}/zip-safe +0 -0
@@ -48,7 +48,6 @@ class CatBoostModel(AbstractModel):
48
48
  default_params = get_param_baseline(problem_type=self.problem_type)
49
49
  for param, val in default_params.items():
50
50
  self._set_default_param_value(param, val)
51
- self._set_default_param_value("random_seed", 0) # Remove randomness for reproducibility
52
51
  # Set 'allow_writing_files' to True in order to keep log files created by catboost during training (these will be saved in the directory where AutoGluon stores this model)
53
52
  self._set_default_param_value("allow_writing_files", False) # Disables creation of catboost logging files during training by default
54
53
  if self.problem_type != SOFTCLASS: # TODO: remove this after catboost 0.24
@@ -117,6 +116,9 @@ class CatBoostModel(AbstractModel):
117
116
  approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + baseline_memory_bytes
118
117
  return approx_mem_size_req
119
118
 
119
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
120
+ return hyperparameters.get("random_seed", "N/A")
121
+
120
122
  # TODO: Use Pool in preprocess, optimize bagging to do Pool.split() to avoid re-computing pool for each fold! Requires stateful + y
121
123
  # Pool is much more memory efficient, avoids copying data twice in memory
122
124
  def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=-1, sample_weight=None, sample_weight_val=None, **kwargs):
@@ -126,6 +128,8 @@ class CatBoostModel(AbstractModel):
126
128
 
127
129
  ag_params = self._get_ag_params()
128
130
  params = self._get_model_params()
131
+ params["random_seed"] = self.random_seed
132
+
129
133
  params["thread_count"] = num_cpus
130
134
  if self.problem_type == SOFTCLASS:
131
135
  # FIXME: This is extremely slow due to unoptimized metric / objective sent to CatBoost
@@ -322,8 +322,8 @@ class NNFastAiTabularModel(AbstractModel):
322
322
  # Make deterministic
323
323
  from fastai.torch_core import set_seed
324
324
 
325
- set_seed(0, True)
326
- dls.rng.seed(0)
325
+ set_seed(self.random_seed, True)
326
+ dls.rng.seed(self.random_seed)
327
327
 
328
328
  if self.problem_type == QUANTILE:
329
329
  dls.c = len(self.quantile_levels)
@@ -214,7 +214,7 @@ class KNNModel(AbstractModel):
214
214
  def sample_func(chunk, frac):
215
215
  # Guarantee at least 1 sample (otherwise log_loss would crash or model would return different column counts in pred_proba)
216
216
  n = max(math.ceil(len(chunk) * frac), 1)
217
- return chunk.sample(n=n, replace=False, random_state=0)
217
+ return chunk.sample(n=n, replace=False, random_state=self.random_seed)
218
218
 
219
219
  if self.problem_type != REGRESSION:
220
220
  y_df = y.to_frame(name="label").reset_index(drop=True)
@@ -128,6 +128,13 @@ class LGBModel(AbstractModel):
128
128
  approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + mem_size_estimators
129
129
  return approx_mem_size_req
130
130
 
131
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
132
+ if "seed_value" in hyperparameters:
133
+ return hyperparameters["seed_value"]
134
+ if "seed" in hyperparameters:
135
+ return hyperparameters["seed"]
136
+ return "N/A"
137
+
131
138
  def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=0, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
132
139
  try_import_lightgbm() # raise helpful error message if LightGBM isn't installed
133
140
  start_time = time.time()
@@ -225,7 +232,6 @@ class LGBModel(AbstractModel):
225
232
  if log_period is not None:
226
233
  callbacks.append(log_evaluation(period=log_period))
227
234
 
228
- seed_val = params.pop("seed_value", 0)
229
235
  train_params = {
230
236
  "params": params,
231
237
  "train_set": dataset_train,
@@ -285,8 +291,8 @@ class LGBModel(AbstractModel):
285
291
  train_params["params"]["num_classes"] = self.num_classes
286
292
  elif self.problem_type == QUANTILE:
287
293
  train_params["params"]["quantile_levels"] = self.quantile_levels
288
- if seed_val is not None:
289
- train_params["params"]["seed"] = seed_val
294
+
295
+ train_params["params"]["seed"] = self.random_seed
290
296
 
291
297
  # Train LightGBM model:
292
298
  # Note that self.model contains a <class 'lightgbm.basic.Booster'> not a LightBGMClassifier or LightGBMRegressor object
@@ -155,13 +155,16 @@ class LinearModel(AbstractModel):
155
155
  return self._pipeline.fit_transform(X)
156
156
 
157
157
  def _set_default_params(self):
158
- default_params = {"random_state": 0, "fit_intercept": True}
158
+ default_params = {"fit_intercept": True}
159
159
  if self.problem_type != REGRESSION:
160
160
  default_params.update({"solver": _get_solver(self.problem_type)})
161
161
  default_params.update(get_param_baseline())
162
162
  for param, val in default_params.items():
163
163
  self._set_default_param_value(param, val)
164
164
 
165
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
166
+ return hyperparameters.get("random_seed", "N/A")
167
+
165
168
  def _get_default_searchspace(self):
166
169
  return get_default_searchspace(self.problem_type)
167
170
 
@@ -215,7 +218,7 @@ class LinearModel(AbstractModel):
215
218
  total_iter = 0
216
219
  total_iter_used = 0
217
220
  total_max_iter = sum(max_iter_list)
218
- model = model_cls(max_iter=max_iter_list[0], **params)
221
+ model = model_cls(max_iter=max_iter_list[0], random_state=self.random_seed, **params)
219
222
  early_stop = False
220
223
  for i, cur_max_iter in enumerate(max_iter_list):
221
224
  if time_left is not None and (i > 0):
@@ -77,6 +77,9 @@ class MitraModel(AbstractModel):
77
77
 
78
78
  return X
79
79
 
80
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
81
+ return hyperparameters.get("seed", "N/A")
82
+
80
83
  def _fit(
81
84
  self,
82
85
  X: pd.DataFrame,
@@ -139,6 +142,7 @@ class MitraModel(AbstractModel):
139
142
  hyp["verbose"] = verbosity >= 3
140
143
 
141
144
  self.model = model_cls(
145
+ seed=self.random_seed,
142
146
  **hyp,
143
147
  )
144
148
 
@@ -82,6 +82,9 @@ class RealMLPModel(AbstractModel):
82
82
  model_cls = RealMLP_TD_S_Regressor
83
83
  return model_cls
84
84
 
85
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
86
+ return hyperparameters.get("random_state", "N/A")
87
+
85
88
  def _fit(
86
89
  self,
87
90
  X: pd.DataFrame,
@@ -175,6 +178,7 @@ class RealMLPModel(AbstractModel):
175
178
  self.model = model_cls(
176
179
  n_threads=num_cpus,
177
180
  device=device,
181
+ random_state=self.random_seed,
178
182
  **init_kwargs,
179
183
  **hyp,
180
184
  )
@@ -243,8 +247,6 @@ class RealMLPModel(AbstractModel):
243
247
 
244
248
  def _set_default_params(self):
245
249
  default_params = dict(
246
- random_state=0,
247
-
248
250
  # Don't use early stopping by default, seems to work well without
249
251
  use_early_stopping=False,
250
252
  early_stopping_additive_patience=40,
@@ -97,7 +97,6 @@ class RFModel(AbstractModel):
97
97
  # This size scales linearly with number of rows.
98
98
  "max_leaf_nodes": 15000,
99
99
  "n_jobs": -1,
100
- "random_state": 0,
101
100
  "bootstrap": True, # Required for OOB estimates, setting to False will raise exception if bagging.
102
101
  # TODO: min_samples_leaf=5 is too large on most problems, however on some datasets it helps a lot (airlines likes >40 min_samples_leaf, adult likes 2 much better than 1)
103
102
  # This value would need to be tuned per dataset, likely very worthwhile.
@@ -108,6 +107,9 @@ class RFModel(AbstractModel):
108
107
  for param, val in default_params.items():
109
108
  self._set_default_param_value(param, val)
110
109
 
110
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
111
+ return hyperparameters.get("random_state", "N/A")
112
+
111
113
  # TODO: Add in documentation that Categorical default is the first index
112
114
  # TODO: enable HPO for RF models
113
115
  def _get_default_searchspace(self):
@@ -206,7 +208,7 @@ class RFModel(AbstractModel):
206
208
  # FIXME: This is inefficient but sklearnex doesn't support computing oob_score after training
207
209
  params["oob_score"] = True
208
210
 
209
- model = model_cls(**params)
211
+ model = model_cls(random_state=self.random_seed, **params)
210
212
 
211
213
  time_train_start = time.time()
212
214
  for i, n_estimators in enumerate(n_estimator_increments):
@@ -89,6 +89,7 @@ class TabICLModel(AbstractModel):
89
89
  **hyp,
90
90
  device=device,
91
91
  n_jobs=num_cpus,
92
+ random_state=self.random_seed,
92
93
  )
93
94
  X = self.preprocess(X)
94
95
  self.model = self.model.fit(
@@ -96,12 +97,8 @@ class TabICLModel(AbstractModel):
96
97
  y=y,
97
98
  )
98
99
 
99
- def _set_default_params(self):
100
- default_params = {
101
- "random_state": 42,
102
- }
103
- for param, val in default_params.items():
104
- self._set_default_param_value(param, val)
100
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
101
+ return hyperparameters.get("random_state", "N/A")
105
102
 
106
103
  def _get_default_auxiliary_params(self) -> dict:
107
104
  default_auxiliary_params = super()._get_default_auxiliary_params()
@@ -106,6 +106,7 @@ class TabMModel(AbstractModel):
106
106
  device=device,
107
107
  problem_type=self.problem_type,
108
108
  early_stopping_metric=self.stopping_metric,
109
+ random_state=self.random_seed,
109
110
  **hyp,
110
111
  )
111
112
 
@@ -141,12 +142,8 @@ class TabMModel(AbstractModel):
141
142
 
142
143
  return X
143
144
 
144
- def _set_default_params(self):
145
- default_params = dict(
146
- random_state=0,
147
- )
148
- for param, val in default_params.items():
149
- self._set_default_param_value(param, val)
145
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
146
+ return hyperparameters.get("random_state", "N/A")
150
147
 
151
148
  @classmethod
152
149
  def supported_problem_types(cls) -> list[str] | None:
@@ -178,7 +178,7 @@ class TabPFNMixModel(AbstractModel):
178
178
  elif weights_path is not None:
179
179
  logger.log(15, f'\tLoading pre-trained weights from file... (weights_path="{weights_path}")')
180
180
 
181
- cfg = ConfigRun(hyperparams=params, task=task, device=device)
181
+ cfg = ConfigRun(hyperparams=params, task=task, device=device, seed=self.random_seed)
182
182
 
183
183
  if cfg.hyperparams["max_epochs"] == 0 and cfg.hyperparams["n_ensembles"] != 1:
184
184
  logger.log(
@@ -242,14 +242,14 @@ class TabPFNMixModel(AbstractModel):
242
242
  return self
243
243
 
244
244
  # TODO: Make this generic by creating a generic `preprocess_train` and putting this logic prior to `_preprocess`.
245
- def _subsample_data(self, X: pd.DataFrame, y: pd.Series, num_rows: int, random_state=0) -> (pd.DataFrame, pd.Series):
245
+ def _subsample_data(self, X: pd.DataFrame, y: pd.Series, num_rows: int) -> (pd.DataFrame, pd.Series):
246
246
  num_rows_to_drop = len(X) - num_rows
247
247
  X, _, y, _ = generate_train_test_split(
248
248
  X=X,
249
249
  y=y,
250
250
  problem_type=self.problem_type,
251
251
  test_size=num_rows_to_drop,
252
- random_state=random_state,
252
+ random_state=self.random_seed,
253
253
  min_cls_count_train=1,
254
254
  )
255
255
  return X, y
@@ -201,6 +201,7 @@ class TabPFNV2Model(AbstractModel):
201
201
  X = self.preprocess(X, is_train=True)
202
202
 
203
203
  hps = self._get_model_params()
204
+ hps["random_state"] = self.random_seed
204
205
  hps["device"] = device
205
206
  hps["n_jobs"] = num_cpus
206
207
  hps["categorical_features_indices"] = self._cat_indices
@@ -300,12 +301,14 @@ class TabPFNV2Model(AbstractModel):
300
301
 
301
302
  def _set_default_params(self):
302
303
  default_params = {
303
- "random_state": 42,
304
304
  "ignore_pretraining_limits": True, # to ignore warnings and size limits
305
305
  }
306
306
  for param, val in default_params.items():
307
307
  self._set_default_param_value(param, val)
308
308
 
309
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
310
+ return hyperparameters.get("random_state", "N/A")
311
+
309
312
  @classmethod
310
313
  def supported_problem_types(cls) -> list[str] | None:
311
314
  return ["binary", "multiclass", "regression"]
@@ -7,9 +7,7 @@ from autogluon.core.constants import BINARY, MULTICLASS, QUANTILE, REGRESSION
7
7
 
8
8
  def get_fixed_params(framework):
9
9
  """Parameters that currently cannot be searched during HPO"""
10
- fixed_params = {
11
- # 'seed_value': 0, # random seed for reproducibility (set = None to ignore)
12
- }
10
+ fixed_params = {}
13
11
  # TODO: v1.2 Change default epochs_wo_improve to "auto", so that None can mean no early stopping.
14
12
  pytorch_fixed_params = {
15
13
  "num_epochs": 1000, # maximum number of epochs (passes over full dataset) for training NN
@@ -164,6 +164,9 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
164
164
 
165
165
  return processor_kwargs, optimizer_kwargs, fit_kwargs, loss_kwargs, params
166
166
 
167
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
168
+ return hyperparameters.get("seed_value", "N/A")
169
+
167
170
  def _fit(
168
171
  self,
169
172
  X: pd.DataFrame,
@@ -191,7 +194,7 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
191
194
 
192
195
  processor_kwargs, optimizer_kwargs, fit_kwargs, loss_kwargs, params = self._prepare_params(params=params)
193
196
 
194
- seed_value = params.pop("seed_value", 0)
197
+ seed_value = self.random_seed
195
198
 
196
199
  self._num_cpus_infer = params.pop("_num_cpus_infer", 1)
197
200
  if seed_value is not None: # Set seeds
@@ -75,11 +75,15 @@ class XGBoostModel(AbstractModel):
75
75
 
76
76
  return X
77
77
 
78
+ def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
79
+ return hyperparameters.get("seed", "N/A")
80
+
78
81
  def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=None, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
79
82
  # TODO: utilize sample_weight_val in early-stopping if provided
80
83
  start_time = time.time()
81
84
  ag_params = self._get_ag_params()
82
85
  params = self._get_model_params()
86
+ params["seed"] = self.random_seed
83
87
  generate_curves = ag_params.get("generate_curves", False)
84
88
 
85
89
  if generate_curves:
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20250731"
3
+ __version__ = "1.4.1b20250802"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20250731
3
+ Version: 1.4.1b20250802
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,21 +41,22 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.4.1b20250731
45
- Requires-Dist: autogluon.features==1.4.1b20250731
44
+ Requires-Dist: autogluon.core==1.4.1b20250802
45
+ Requires-Dist: autogluon.features==1.4.1b20250802
46
46
  Provides-Extra: all
47
47
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
48
+ Requires-Dist: transformers; extra == "all"
49
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
50
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
48
52
  Requires-Dist: einx; extra == "all"
53
+ Requires-Dist: omegaconf; extra == "all"
49
54
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
50
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
51
- Requires-Dist: huggingface-hub[torch]; extra == "all"
52
- Requires-Dist: loguru; extra == "all"
53
55
  Requires-Dist: spacy<3.9; extra == "all"
56
+ Requires-Dist: loguru; extra == "all"
57
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
54
58
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
55
- Requires-Dist: omegaconf; extra == "all"
56
- Requires-Dist: transformers; extra == "all"
57
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
58
- Requires-Dist: autogluon.core[all]==1.4.1b20250731; extra == "all"
59
+ Requires-Dist: autogluon.core[all]==1.4.1b20250802; extra == "all"
59
60
  Requires-Dist: torch<2.8,>=2.2; extra == "all"
60
61
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
61
62
  Provides-Extra: catboost
@@ -77,8 +78,9 @@ Requires-Dist: omegaconf; extra == "mitra"
77
78
  Requires-Dist: torch<2.8,>=2.2; extra == "mitra"
78
79
  Requires-Dist: transformers; extra == "mitra"
79
80
  Requires-Dist: huggingface-hub[torch]; extra == "mitra"
81
+ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
80
82
  Provides-Extra: ray
81
- Requires-Dist: autogluon.core[all]==1.4.1b20250731; extra == "ray"
83
+ Requires-Dist: autogluon.core[all]==1.4.1b20250802; extra == "ray"
82
84
  Provides-Extra: realmlp
83
85
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
84
86
  Provides-Extra: skex
@@ -91,21 +93,22 @@ Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "
91
93
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
92
94
  Provides-Extra: tabarena
93
95
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
94
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
95
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
96
- Requires-Dist: einx; extra == "tabarena"
97
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
98
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
99
- Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
100
- Requires-Dist: spacy<3.9; extra == "tabarena"
101
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
102
- Requires-Dist: omegaconf; extra == "tabarena"
103
96
  Requires-Dist: transformers; extra == "tabarena"
97
+ Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
104
98
  Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
99
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
105
100
  Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
101
+ Requires-Dist: einx; extra == "tabarena"
102
+ Requires-Dist: omegaconf; extra == "tabarena"
103
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
104
+ Requires-Dist: spacy<3.9; extra == "tabarena"
106
105
  Requires-Dist: loguru; extra == "tabarena"
107
- Requires-Dist: autogluon.core[all]==1.4.1b20250731; extra == "tabarena"
108
- Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
106
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
107
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
108
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
109
+ Requires-Dist: autogluon.core[all]==1.4.1b20250802; extra == "tabarena"
110
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
111
+ Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
109
112
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
110
113
  Provides-Extra: tabicl
111
114
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.4.1b20250731-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.1b20250802-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=a6cJNShyrjw6A3GjhwdBa6BMlB7tukErmA0eeHEQwxc,91
3
+ autogluon/tabular/version.py,sha256=lAVRa1Y009vtbRq_mgNG9fMmMPrmSsp-wyzZSe2lbsg,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -26,7 +26,7 @@ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB
26
26
  autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
27
27
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
28
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
29
- autogluon/tabular/models/catboost/catboost_model.py,sha256=08cLCrhSogJSsXlas0_1ZnomatxEGdOjN1WS_NyXOJI,18043
29
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=mcNL00envms32XqbGXr3dMujMIdx9lC4U3F_XkO8ru8,18150
30
30
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
31
31
  autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
32
32
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -37,7 +37,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
37
37
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
38
38
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
39
39
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
40
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=km-8gM7i_pCYggde0M7xysp3jMn811W-dI0aYK_8o5Y,29541
40
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=efy4BJr1DiurTTKh2ouYuujfwdY4c969XH314qeLwL8,29571
41
41
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
42
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
43
43
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -51,25 +51,25 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
51
51
  autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
52
52
  autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
54
- autogluon/tabular/models/knn/knn_model.py,sha256=qZwBnDVPT2Fd5aDPZqcwugszeUYREm5nZ_-bHVVE3_s,13977
54
+ autogluon/tabular/models/knn/knn_model.py,sha256=o_AsOduOGI9XM4GNNAFNUBgDIqCrAcPMawTX2s71UtA,13992
55
55
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
56
56
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
57
57
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
58
  autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
59
- autogluon/tabular/models/lgb/lgb_model.py,sha256=S1OGVHivJWMTwBnVXlUdFqyOPKK_W8yfFsFynbiDXHU,25855
59
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=fVxDtzmEG2hEBQpAIUcfxQjy54PTgX5djg2XTa_y1eI,26072
60
60
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
61
61
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
62
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
63
63
  autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
64
64
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
65
- autogluon/tabular/models/lr/lr_model.py,sha256=wTrrTWVwmlAyx4RAxhfXHbkvZTAVIvAiTadpEChGEzc,15599
65
+ autogluon/tabular/models/lr/lr_model.py,sha256=9qoGwrIsnayXCp6OcuzSUSe3uiP21diQBjGFU-2vdJE,15765
66
66
  autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
67
67
  autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
68
68
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
69
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
70
70
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
71
71
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
- autogluon/tabular/models/mitra/mitra_model.py,sha256=Ugk2-YmMRlo127jTZKNIv2qEqwNby8_nfpSspng7D3o,12253
72
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=9c0qwFnKl5WgdSuMMjluGKCSh0BePWT9_RWPtVb7Rcc,12435
73
73
  autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
74
74
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
75
75
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
@@ -95,23 +95,23 @@ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=TorZsQR7LE5QRq2E
95
95
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
96
96
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
97
97
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
98
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=ndJFzVw1DqQS2-FpqPQBvyF0Odo6sVqSjd_vT4LCpNY,14571
98
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=ASplFpuDmzm-PMjaG_V7swhAgcowr5qYZo8QcsHDltA,14740
99
99
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
- autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
100
+ autogluon/tabular/models/rf/rf_model.py,sha256=wS2tFehnACoP_ZKsTqaLuLaAlL6E1IDOMNAi0MbX6Yo,21796
101
101
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
102
102
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
103
103
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
104
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
105
105
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
106
106
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=je647L7pFFm8q3Lnl_d7hDPCDIvEkeCiMvBHv6sTDMU,6461
107
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=fSn-7P6Eo2H74EBFHjnav38x9hQQRCT-0_I2_TsBidw,6450
108
108
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
109
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
110
110
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
111
- autogluon/tabular/models/tabm/tabm_model.py,sha256=ZWQFNmgsj2pK0-0E_8CXpD-T9AkKyGQWq4npuyLgVcc,10458
111
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=LmCVrldOFC0mBuUhDx9vIHQ85bFXtv0YjOAqo14_0cA,10447
112
112
  autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
113
113
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
114
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=fZAkiKojjVyLhukH16oOwFpf3v3vRF0XEDGvZDy1zjQ,16304
114
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=2uc4O8r2UJBk2tYpZ_wI9v4kN2NIce46W96tm_HDO3w,16315
115
115
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
116
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
117
117
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
@@ -137,7 +137,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
137
137
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
138
138
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
139
139
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
140
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=uSdnBa9R12OXKL9-2-7EINfRghu70w1SsLbmRdjG-38,14802
140
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=9HP8H2mhu9VihafICVnBQIYNyWVKZwO1T7tBzHEIZYU,14972
141
141
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
142
142
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
143
143
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -150,10 +150,10 @@ autogluon/tabular/models/tabular_nn/compilers/__init__.py,sha256=47DEQpj8HBSa-_T
150
150
  autogluon/tabular/models/tabular_nn/compilers/native.py,sha256=W8d8cqBj7U-KVhfGK3hdtGj8JJm3lXr_SecU0615Gbs,1330
151
151
  autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=3mj9_5p6YMOuKbYk7FBQ2Ijhm1kGzfqq6cyyKLUKLOo,14804
152
152
  autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
153
- autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
153
+ autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
154
154
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
155
155
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=zO2-3oe3T4QgPQCSirXzo8QxrHPqTln39CwbgwXDtsk,43016
156
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=y_rijxQyvqjmMHXLmDDc-45E91We7c3iUWFuPtncGd0,43158
157
157
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
158
158
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
159
159
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -164,7 +164,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
164
164
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
165
165
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
166
166
  autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
167
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=MCzZv3ty2p7N9-4qGPaCUha2VnLBm-vY2KA23Xny0ag,15235
167
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=L9C1EVtWp2Rfx2NSq2KmCQ0uTr80H7x-DpQsaS406EE,15424
168
168
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
169
169
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
170
170
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
@@ -189,11 +189,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
189
189
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
190
190
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
191
191
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
192
- autogluon.tabular-1.4.1b20250731.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
- autogluon.tabular-1.4.1b20250731.dist-info/METADATA,sha256=-wV2x3qMUY2ECzE3O1_xj-p3RISVgcU5J3V5r1akDx0,16087
194
- autogluon.tabular-1.4.1b20250731.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
- autogluon.tabular-1.4.1b20250731.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
- autogluon.tabular-1.4.1b20250731.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.4.1b20250731.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
- autogluon.tabular-1.4.1b20250731.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
- autogluon.tabular-1.4.1b20250731.dist-info/RECORD,,
192
+ autogluon.tabular-1.4.1b20250802.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
+ autogluon.tabular-1.4.1b20250802.dist-info/METADATA,sha256=4ml4vSWla_QphmtqtixU3OMTXqZH3xHLzf_K7mtDtEg,16238
194
+ autogluon.tabular-1.4.1b20250802.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
+ autogluon.tabular-1.4.1b20250802.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
+ autogluon.tabular-1.4.1b20250802.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.4.1b20250802.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
+ autogluon.tabular-1.4.1b20250802.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
+ autogluon.tabular-1.4.1b20250802.dist-info/RECORD,,