autogluon.tabular 1.4.0b20250724__py3-none-any.whl → 1.4.0b20250726__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (21) hide show
  1. autogluon/tabular/configs/presets_configs.py +8 -6
  2. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +1 -0
  3. autogluon/tabular/models/automm/automm_model.py +2 -0
  4. autogluon/tabular/models/automm/ft_transformer.py +4 -1
  5. autogluon/tabular/models/mitra/mitra_model.py +20 -18
  6. autogluon/tabular/models/realmlp/realmlp_model.py +13 -6
  7. autogluon/tabular/models/tabicl/tabicl_model.py +14 -5
  8. autogluon/tabular/models/tabm/tabm_model.py +14 -6
  9. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
  10. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +14 -6
  11. autogluon/tabular/predictor/predictor.py +6 -6
  12. autogluon/tabular/version.py +1 -1
  13. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/METADATA +26 -26
  14. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/RECORD +21 -21
  15. /autogluon.tabular-1.4.0b20250724-py3.9-nspkg.pth → /autogluon.tabular-1.4.0b20250726-py3.9-nspkg.pth +0 -0
  16. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/LICENSE +0 -0
  17. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/NOTICE +0 -0
  18. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/WHEEL +0 -0
  19. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/namespace_packages.txt +0 -0
  20. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/top_level.txt +0 -0
  21. {autogluon.tabular-1.4.0b20250724.dist-info → autogluon.tabular-1.4.0b20250726.dist-info}/zip-safe +0 -0
@@ -75,7 +75,7 @@ tabular_presets_dict = dict(
75
75
  # Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
76
76
  # Experimental presets can be removed or changed without warning.
77
77
 
78
- # [EXPERIMENTAL PRESET] The `experimental_quality` preset may be changed or removed without warning.
78
+ # [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
79
79
  # This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
80
80
  # Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
81
81
  # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
@@ -83,9 +83,9 @@ tabular_presets_dict = dict(
83
83
  # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
84
84
  # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
85
85
  # For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
86
- # Aliases: experimental
86
+ # Aliases: extreme, experimental, experimental_quality
87
87
  # GPU STRONGLY RECOMMENDED
88
- experimental_quality={
88
+ extreme_quality={
89
89
  "auto_stack": True,
90
90
  "dynamic_stacking": "auto",
91
91
  "num_bag_sets": 1,
@@ -128,7 +128,7 @@ tabular_presets_dict = dict(
128
128
 
129
129
  # Alias preset name alternatives
130
130
  tabular_presets_alias = dict(
131
- experimental="experimental_quality",
131
+ extreme="extreme_quality",
132
132
  best="best_quality",
133
133
  high="high_quality",
134
134
  high_quality_fast_inference_only_refit="high_quality",
@@ -136,10 +136,12 @@ tabular_presets_alias = dict(
136
136
  good_quality_faster_inference_only_refit="good_quality",
137
137
  medium="medium_quality",
138
138
  medium_quality_faster_train="medium_quality",
139
- eq="experimental_quality",
139
+ eq="extreme_quality",
140
140
  bq="best_quality",
141
141
  hq="high_quality",
142
142
  gq="good_quality",
143
143
  mq="medium_quality",
144
- experimental_quality_v140="experimental_quality",
144
+ experimental="extreme_quality",
145
+ experimental_quality="extreme_quality",
146
+ experimental_quality_v140="extreme_quality",
145
147
  )
@@ -303,6 +303,7 @@ hyperparameter_portfolio_zeroshot_2025_small = {
303
303
  "n_estimators": 1,
304
304
  "fine_tune": True,
305
305
  "fine_tune_steps": 50,
306
+ "ag.num_gpus": 1,
306
307
  "ag_args": {'priority': -21},
307
308
  },
308
309
  ],
@@ -65,6 +65,8 @@ class MultiModalPredictorModel(AbstractModel):
65
65
  Names of the features.
66
66
  feature_metadata
67
67
  The feature metadata.
68
+
69
+ .. versionadded:: 0.3.0
68
70
  """
69
71
  super().__init__(**kwargs)
70
72
  self._label_column_name = None
@@ -17,7 +17,8 @@ class FTTransformerModel(MultiModalPredictorModel):
17
17
  ag_name = "FTTransformer"
18
18
 
19
19
  def __init__(self, **kwargs):
20
- """Wrapper of autogluon.multimodal.MultiModalPredictor.
20
+ """
21
+ FT-Transformer model.
21
22
 
22
23
  The features can be a mix of
23
24
  - categorical column
@@ -48,6 +49,8 @@ class FTTransformerModel(MultiModalPredictorModel):
48
49
  Names of the features.
49
50
  feature_metadata
50
51
  The feature metadata.
52
+
53
+ .. versionadded:: 0.6.0
51
54
  """
52
55
  super().__init__(**kwargs)
53
56
 
@@ -15,6 +15,19 @@ logger = logging.getLogger(__name__)
15
15
 
16
16
 
17
17
  class MitraModel(AbstractModel):
18
+ """
19
+ Mitra is a tabular foundation model pre-trained purely on synthetic data with the goal
20
+ of optimizing fine-tuning performance over in-context learning performance.
21
+ Mitra was developed by the AutoGluon team @ AWS AI.
22
+
23
+ Mitra's default hyperparameters outperforms all methods for small datasets on TabArena-v0.1 (excluding ensembling): https://tabarena.ai
24
+
25
+ Authors: Xiyuan Zhang, Danielle C. Maddix, Junming Yin, Nick Erickson, Abdul Fatir Ansari, Boran Han, Shuai Zhang, Leman Akoglu, Christos Faloutsos, Michael W. Mahoney, Cuixiong Hu, Huzefa Rangwala, George Karypis, Bernie Wang
26
+ Blog Post: https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models
27
+ License: Apache-2.0
28
+
29
+ .. versionadded:: 1.4.0
30
+ """
18
31
  ag_key = "MITRA"
19
32
  ag_name = "Mitra"
20
33
  weights_file_name = "model.pt"
@@ -106,6 +119,13 @@ class MitraModel(AbstractModel):
106
119
  else:
107
120
  hyp["device"] = self._get_default_device()
108
121
 
122
+ if hyp["device"] == "cpu" and hyp.get("fine_tune", True):
123
+ logger.log(
124
+ 30,
125
+ f"\tWarning: Attempting to fine-tune Mitra on CPU. This will be very slow. "
126
+ f"We strongly recommend using a GPU instance to fine-tune Mitra."
127
+ )
128
+
109
129
  if "state_dict_classification" in hyp:
110
130
  state_dict_classification = hyp.pop("state_dict_classification")
111
131
  if self.problem_type in ["binary", "multiclass"]:
@@ -216,24 +236,6 @@ class MitraModel(AbstractModel):
216
236
 
217
237
  return num_cpus, num_gpus
218
238
 
219
- def get_minimum_resources(self, is_gpu_available: bool = False) -> dict[str, int | float]:
220
- """
221
- Parameters
222
- ----------
223
- is_gpu_available : bool, default = False
224
- Whether gpu is available in the system.
225
- Model that can be trained both on cpu and gpu can decide the minimum resources based on this.
226
-
227
- Returns a dictionary of minimum resource requirements to fit the model.
228
- Subclass should consider overriding this method if it requires more resources to train.
229
- If a resource is not part of the output dictionary, it is considered unnecessary.
230
- Valid keys: 'num_cpus', 'num_gpus'.
231
- """
232
- return {
233
- "num_cpus": 1,
234
- "num_gpus": 0.5,
235
- }
236
-
237
239
  def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
238
240
  return self.estimate_memory_usage_static(
239
241
  X=X, problem_type=self.problem_type, num_classes=self.num_classes, **kwargs
@@ -1,11 +1,5 @@
1
1
  """
2
2
  Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/realmlp/realmlp_model.py
3
-
4
- Model: RealMLP
5
- Paper: Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
6
- Authors: David Holzmüller, Léo Grinsztajn, Ingo Steinwart
7
- Codebase: https://github.com/dholzmueller/pytabkit
8
- License: Apache-2.0
9
3
  """
10
4
 
11
5
  from __future__ import annotations
@@ -41,6 +35,19 @@ def set_logger_level(logger_name: str, level: int):
41
35
 
42
36
  # pip install pytabkit
43
37
  class RealMLPModel(AbstractModel):
38
+ """
39
+ RealMLP is an improved multilayer perception (MLP) model
40
+ through a bag of tricks and better default hyperparameters.
41
+
42
+ RealMLP is the top performing method overall on TabArena-v0.1: https://tabarena.ai
43
+
44
+ Paper: Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
45
+ Authors: David Holzmüller, Léo Grinsztajn, Ingo Steinwart
46
+ Codebase: https://github.com/dholzmueller/pytabkit
47
+ License: Apache-2.0
48
+
49
+ .. versionadded:: 1.4.0
50
+ """
44
51
  ag_key = "REALMLP"
45
52
  ag_name = "RealMLP"
46
53
  ag_priority = 75
@@ -1,10 +1,5 @@
1
1
  """
2
2
  Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/tabicl/tabicl_model.py
3
- Model: TabICL
4
- Paper: TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
5
- Authors: Jingang Qu, David Holzmüller, Gaël Varoquaux, Marine Le Morvan
6
- Codebase: https://github.com/soda-inria/tabicl
7
- License: BSD-3-Clause
8
3
  """
9
4
 
10
5
  from __future__ import annotations
@@ -23,6 +18,20 @@ logger = logging.getLogger(__name__)
23
18
 
24
19
  # TODO: Verify if crashes when weights are not yet downloaded and fit in parallel
25
20
  class TabICLModel(AbstractModel):
21
+ """
22
+ TabICL is a foundation model for tabular data using in-context learning
23
+ that is scalable to larger datasets than TabPFNv2. It is pretrained purely on synthetic data.
24
+ TabICL currently only supports classification tasks.
25
+
26
+ TabICL is one of the top performing methods overall on TabArena-v0.1: https://tabarena.ai
27
+
28
+ Paper: TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
29
+ Authors: Jingang Qu, David Holzmüller, Gaël Varoquaux, Marine Le Morvan
30
+ Codebase: https://github.com/soda-inria/tabicl
31
+ License: BSD-3-Clause
32
+
33
+ .. versionadded:: 1.4.0
34
+ """
26
35
  ag_key = "TABICL"
27
36
  ag_name = "TabICL"
28
37
  ag_priority = 65
@@ -4,12 +4,6 @@ Note: This is a custom implementation of TabM based on TabArena. Because the Aut
4
4
  the same time as TabM became available on PyPi, we chose to use TabArena's implementation
5
5
  for the AutoGluon 1.4 release as it has already been benchmarked.
6
6
 
7
- Model: TabM
8
- Paper: TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
9
- Authors: Yury Gorishniy, Akim Kotelnikov, Artem Babenko
10
- Codebase: https://github.com/yandex-research/tabm
11
- License: Apache-2.0
12
-
13
7
  Partially adapted from pytabkit's TabM implementation.
14
8
  """
15
9
 
@@ -28,6 +22,20 @@ logger = logging.getLogger(__name__)
28
22
 
29
23
 
30
24
  class TabMModel(AbstractModel):
25
+ """
26
+ TabM is an efficient ensemble of MLPs that is trained simultaneously with mostly shared parameters.
27
+
28
+ TabM is one of the top performing methods overall on TabArena-v0.1: https://tabarena.ai
29
+
30
+ Paper: TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
31
+ Authors: Yury Gorishniy, Akim Kotelnikov, Artem Babenko
32
+ Codebase: https://github.com/yandex-research/tabm
33
+ License: Apache-2.0
34
+
35
+ Partially adapted from pytabkit's TabM implementation.
36
+
37
+ .. versionadded:: 1.4.0
38
+ """
31
39
  ag_key = "TABM"
32
40
  ag_name = "TabM"
33
41
  ag_priority = 85
@@ -26,6 +26,8 @@ class TabPFNMixModel(AbstractModel):
26
26
 
27
27
  TabPFNMix is based off of the TabPFN and TabForestPFN models.
28
28
 
29
+ We recommend using Mitra instead, as it is an improved version of TabPFNMix.
30
+
29
31
  It is a tabular transformer model pre-trained on purely synthetic data.
30
32
 
31
33
  It currently has several limitations:
@@ -34,6 +36,8 @@ class TabPFNMixModel(AbstractModel):
34
36
  3. Does not support GPU
35
37
 
36
38
  For more information, refer to the `./_internals/README.md` file.
39
+
40
+ .. versionadded:: 1.2.0
37
41
  """
38
42
  ag_key = "TABPFNMIX"
39
43
  ag_name = "TabPFNMix"
@@ -1,11 +1,5 @@
1
1
  """
2
2
  Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/tabpfnv2/tabpfnv2_model.py
3
-
4
- Model: TabPFNv2
5
- Paper: Accurate predictions on small data with a tabular foundation model
6
- Authors: Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister & Frank Hutter
7
- Codebase: https://github.com/PriorLabs/TabPFN
8
- License: https://github.com/PriorLabs/TabPFN/blob/main/LICENSE
9
3
  """
10
4
 
11
5
  from __future__ import annotations
@@ -111,6 +105,20 @@ class FixedSafePowerTransformer(PowerTransformer):
111
105
 
112
106
 
113
107
  class TabPFNV2Model(AbstractModel):
108
+ """
109
+ TabPFNv2 is a tabular foundation model pre-trained purely on synthetic data that achieves
110
+ state-of-the-art results with in-context learning on small datasets with <=10000 samples and <=500 features.
111
+ TabPFNv2 is developed and maintained by PriorLabs: https://priorlabs.ai/
112
+
113
+ TabPFNv2 is the top performing method for small datasets on TabArena-v0.1: https://tabarena.ai
114
+
115
+ Paper: Accurate predictions on small data with a tabular foundation model
116
+ Authors: Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister & Frank Hutter
117
+ Codebase: https://github.com/PriorLabs/TabPFN
118
+ License: https://github.com/PriorLabs/TabPFN/blob/main/LICENSE
119
+
120
+ .. versionadded:: 1.4.0
121
+ """
114
122
  ag_key = "TABPFNV2"
115
123
  ag_name = "TabPFNv2"
116
124
  ag_priority = 105
@@ -1068,11 +1068,11 @@ class TabularPredictor:
1068
1068
  20,
1069
1069
  "No presets specified! To achieve strong results with AutoGluon, it is recommended to use the available presets. Defaulting to `'medium'`...\n"
1070
1070
  "\tRecommended Presets (For more details refer to https://auto.gluon.ai/stable/tutorials/tabular/tabular-essentials.html#presets):\n"
1071
- "\tpresets='experimental' : New in v1.4: Massively better than 'best' on datasets <10000 samples by using new models: TabPFNv2, TabICL, Mitra, and TabM. Absolute best accuracy. Requires a GPU. Recommended 64 GB CPU memory and 32+ GB GPU memory.\n"
1072
- "\tpresets='best' : Maximize accuracy. Recommended for most users. Use in competitions and benchmarks.\n"
1073
- "\tpresets='high' : Strong accuracy with fast inference speed.\n"
1074
- "\tpresets='good' : Good accuracy with very fast inference speed.\n"
1075
- "\tpresets='medium' : Fast training time, ideal for initial prototyping.",
1071
+ "\tpresets='extreme' : New in v1.4: Massively better than 'best' on datasets <30000 samples by using new models meta-learned on https://tabarena.ai: TabPFNv2, TabICL, Mitra, and TabM. Absolute best accuracy. Requires a GPU. Recommended 64 GB CPU memory and 32+ GB GPU memory.\n"
1072
+ "\tpresets='best' : Maximize accuracy. Recommended for most users. Use in competitions and benchmarks.\n"
1073
+ "\tpresets='high' : Strong accuracy with fast inference speed.\n"
1074
+ "\tpresets='good' : Good accuracy with very fast inference speed.\n"
1075
+ "\tpresets='medium' : Fast training time, ideal for initial prototyping.",
1076
1076
  )
1077
1077
 
1078
1078
  kwargs_orig = kwargs.copy()
@@ -1130,7 +1130,7 @@ class TabularPredictor:
1130
1130
  # TODO: Temporary for v1.4. Make this more extensible for v1.5 by letting users make their own dynamic hyperparameters.
1131
1131
  dynamic_hyperparameters = kwargs["_experimental_dynamic_hyperparameters"]
1132
1132
  if dynamic_hyperparameters:
1133
- logger.log(20, f"Experimental preset uses a dynamic portfolio based on dataset size...")
1133
+ logger.log(20, f"`extreme` preset uses a dynamic portfolio based on dataset size...")
1134
1134
  assert hyperparameters is None, f"hyperparameters must be unspecified when `_experimental_dynamic_hyperparameters=True`."
1135
1135
  n_samples = len(train_data)
1136
1136
  if n_samples > 30000:
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.0b20250724"
3
+ __version__ = "1.4.0b20250726"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.4.0b20250724
3
+ Version: 1.4.0b20250726
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,22 +41,22 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.4.0b20250724
45
- Requires-Dist: autogluon.features==1.4.0b20250724
44
+ Requires-Dist: autogluon.core==1.4.0b20250726
45
+ Requires-Dist: autogluon.features==1.4.0b20250726
46
46
  Provides-Extra: all
47
- Requires-Dist: transformers; extra == "all"
48
- Requires-Dist: huggingface-hub[torch]; extra == "all"
49
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
50
- Requires-Dist: autogluon.core[all]==1.4.0b20250724; extra == "all"
51
- Requires-Dist: spacy<3.9; extra == "all"
52
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
53
- Requires-Dist: torch<2.8,>=2.2; extra == "all"
54
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
47
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
55
48
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
49
+ Requires-Dist: torch<2.8,>=2.2; extra == "all"
56
50
  Requires-Dist: loguru; extra == "all"
51
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
52
+ Requires-Dist: transformers; extra == "all"
53
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
57
54
  Requires-Dist: einx; extra == "all"
58
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
55
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
56
+ Requires-Dist: spacy<3.9; extra == "all"
59
57
  Requires-Dist: omegaconf; extra == "all"
58
+ Requires-Dist: autogluon.core[all]==1.4.0b20250726; extra == "all"
59
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
60
60
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
61
61
  Provides-Extra: catboost
62
62
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
@@ -78,7 +78,7 @@ Requires-Dist: torch<2.8,>=2.2; extra == "mitra"
78
78
  Requires-Dist: transformers; extra == "mitra"
79
79
  Requires-Dist: huggingface-hub[torch]; extra == "mitra"
80
80
  Provides-Extra: ray
81
- Requires-Dist: autogluon.core[all]==1.4.0b20250724; extra == "ray"
81
+ Requires-Dist: autogluon.core[all]==1.4.0b20250726; extra == "ray"
82
82
  Provides-Extra: realmlp
83
83
  Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
84
84
  Provides-Extra: skex
@@ -90,22 +90,22 @@ Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
90
90
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
91
91
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
92
92
  Provides-Extra: tabarena
93
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
94
- Requires-Dist: transformers; extra == "tabarena"
95
- Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
96
- Requires-Dist: pytabkit<1.6,>=1.5; extra == "tabarena"
97
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
98
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
99
- Requires-Dist: autogluon.core[all]==1.4.0b20250724; extra == "tabarena"
100
- Requires-Dist: spacy<3.9; extra == "tabarena"
101
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
102
- Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
103
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
93
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
104
94
  Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
95
+ Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
105
96
  Requires-Dist: loguru; extra == "tabarena"
97
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
98
+ Requires-Dist: transformers; extra == "tabarena"
99
+ Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
100
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
106
101
  Requires-Dist: einx; extra == "tabarena"
107
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
102
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
103
+ Requires-Dist: spacy<3.9; extra == "tabarena"
108
104
  Requires-Dist: omegaconf; extra == "tabarena"
105
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
106
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "tabarena"
107
+ Requires-Dist: autogluon.core[all]==1.4.0b20250726; extra == "tabarena"
108
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
109
109
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
110
110
  Provides-Extra: tabicl
111
111
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
@@ -175,7 +175,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
175
175
 
176
176
  ```python
177
177
  from autogluon.tabular import TabularPredictor
178
- predictor = TabularPredictor(label="class").fit("train.csv")
178
+ predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
179
179
  predictions = predictor.predict("test.csv")
180
180
  ```
181
181
 
@@ -1,14 +1,14 @@
1
- autogluon.tabular-1.4.0b20250724-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.0b20250726-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=sQbAMP9TVXNv7nE2ealK-zzy0cZUUxkxcLTpbykHhxU,91
3
+ autogluon/tabular/version.py,sha256=X677_QRDbCPTZCRCcshLbt66zrfGkhbhIjj5DPT-OPc,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
7
  autogluon/tabular/configs/hyperparameter_configs.py,sha256=aQ1rrF8P0MX4Ic5M33O96JtKV-K7YpDrgJmWhYmEyug,6848
8
- autogluon/tabular/configs/presets_configs.py,sha256=hIT9CgdIol5y-YLKrcupXWySP_P9HZp_ky_vXmFrFWk,7682
8
+ autogluon/tabular/configs/presets_configs.py,sha256=KxZkUU58dxvKeY8g94gdIJkqi2eos68262-efDJVrhY,7755
9
9
  autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=6yd84vPqOk-6sLCoM_e_PlphrR2NZUjliS7L1SMKMug,29777
11
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=1EH54KvJT35xNVegh1SuvBWt0Qx07vQUdHyc10TwaOI,11966
11
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=NXwfqZLQLx4kdvRqF6deFDdhZZKxbfgpUurdB0kqOh8,11996
12
12
  autogluon/tabular/experimental/__init__.py,sha256=PpkdMSv_pPZted1XRIuzcFWKjM-66VMUukTnCcoiW0s,100
13
13
  autogluon/tabular/experimental/_scikit_mixin.py,sha256=cKeCmtURAXZnhQGrkCBw5rmACCQF7biAWTT3qX8bM2Q,2281
14
14
  autogluon/tabular/experimental/_tabular_classifier.py,sha256=7lGoFdvkHiZS3VpcXo97q4ENV9qyIVDExlWkm0wzL3s,2527
@@ -22,8 +22,8 @@ autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
22
22
  autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
23
23
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
24
24
  autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
- autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYMmQ4Jp5hINJa_fSm-j8,11322
26
- autogluon/tabular/models/automm/ft_transformer.py,sha256=yZ9-TTA4GbtutHhz0Djkrl-rIFNxc7A2LBOFOXYOxVY,3886
25
+ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB7EchcPdSVVncxA9jEM,11355
26
+ autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
27
27
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
28
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
29
29
  autogluon/tabular/models/catboost/catboost_model.py,sha256=08cLCrhSogJSsXlas0_1ZnomatxEGdOjN1WS_NyXOJI,18043
@@ -69,7 +69,7 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
69
69
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
70
70
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
71
71
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
- autogluon/tabular/models/mitra/mitra_model.py,sha256=ha-54y_LgEysUpcPr7dB76fETu9kEQ2oLUXteGYVVeE,11927
72
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=Ugk2-YmMRlo127jTZKNIv2qEqwNby8_nfpSspng7D3o,12253
73
73
  autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
74
74
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
75
75
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
@@ -95,7 +95,7 @@ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=TorZsQR7LE5QRq2E
95
95
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
96
96
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
97
97
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
98
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=hS3n6spbhZ2bTXqP4t73UnzrSNiUqiaQqPakNQHrS9Y,14332
98
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=DS1fsA6gwQGARBQL5KHpw7ExjRE6He4GJkn0NpGGFy8,14591
99
99
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
100
  autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
101
101
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
@@ -104,14 +104,14 @@ autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
104
104
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
105
105
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
106
106
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=ovytUwFdqpVelEp1cDhHczWQkG72icAnuXTW6GdBi_8,6087
107
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=je647L7pFFm8q3Lnl_d7hDPCDIvEkeCiMvBHv6sTDMU,6461
108
108
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
109
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
110
110
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
111
- autogluon/tabular/models/tabm/tabm_model.py,sha256=IQ4RHM1wnf9GHuEa1zDO_yWUPfmh5xUMEVtQ4EFeQRI,10152
111
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=ZWQFNmgsj2pK0-0E_8CXpD-T9AkKyGQWq4npuyLgVcc,10458
112
112
  autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
113
113
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
114
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
114
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=fZAkiKojjVyLhukH16oOwFpf3v3vRF0XEDGvZDy1zjQ,16304
115
115
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
116
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
117
117
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
@@ -137,7 +137,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
137
137
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
138
138
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
139
139
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
140
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=e3M_JM92ebbOAk4raZSgrWxaVkGlbbMedlHJVmyXfJ4,14570
140
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=ykE0KGO9tH0RhMLXXjgp1gJ4cKkk7BTLr_rjNnjzT7c,14999
141
141
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
142
142
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
143
143
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -173,7 +173,7 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
173
173
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
174
174
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
175
175
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
176
- autogluon/tabular/predictor/predictor.py,sha256=E4Z_2V0T3tBNuH8dxCm1pDpGkyGDs7rEgDE1SKOy0ow,359075
176
+ autogluon/tabular/predictor/predictor.py,sha256=ZbkMRGlFJtDyptgU4eDKC7S30OLMB1FnhdGHp3vyoDM,359083
177
177
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
178
178
  autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
179
179
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
@@ -189,11 +189,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
189
189
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
190
190
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
191
191
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
192
- autogluon.tabular-1.4.0b20250724.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
- autogluon.tabular-1.4.0b20250724.dist-info/METADATA,sha256=N8GqPqMCIoGwOwmffPt1scTY3FPCZdP3f3uds0Nm8PI,16071
194
- autogluon.tabular-1.4.0b20250724.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
- autogluon.tabular-1.4.0b20250724.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
- autogluon.tabular-1.4.0b20250724.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.4.0b20250724.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
- autogluon.tabular-1.4.0b20250724.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
- autogluon.tabular-1.4.0b20250724.dist-info/RECORD,,
192
+ autogluon.tabular-1.4.0b20250726.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
+ autogluon.tabular-1.4.0b20250726.dist-info/METADATA,sha256=V_CVPxxcyxysZ71Rgv0tAHgZmy9HG3srrsNYYnpd680,16087
194
+ autogluon.tabular-1.4.0b20250726.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
+ autogluon.tabular-1.4.0b20250726.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
+ autogluon.tabular-1.4.0b20250726.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.4.0b20250726.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
+ autogluon.tabular-1.4.0b20250726.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
+ autogluon.tabular-1.4.0b20250726.dist-info/RECORD,,