autogluon.tabular 1.4.0__py3-none-any.whl → 1.4.1b20251128__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (40) hide show
  1. autogluon/tabular/configs/pipeline_presets.py +130 -0
  2. autogluon/tabular/configs/presets_configs.py +0 -3
  3. autogluon/tabular/models/__init__.py +1 -0
  4. autogluon/tabular/models/catboost/catboost_model.py +4 -1
  5. autogluon/tabular/models/ebm/__init__.py +0 -0
  6. autogluon/tabular/models/ebm/ebm_model.py +259 -0
  7. autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
  8. autogluon/tabular/models/ebm/hyperparameters/parameters.py +39 -0
  9. autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +72 -0
  10. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +4 -2
  11. autogluon/tabular/models/knn/knn_model.py +7 -3
  12. autogluon/tabular/models/lgb/lgb_model.py +56 -18
  13. autogluon/tabular/models/lr/lr_model.py +6 -1
  14. autogluon/tabular/models/lr/lr_preprocessing_utils.py +6 -7
  15. autogluon/tabular/models/mitra/_internal/models/tab2d.py +10 -10
  16. autogluon/tabular/models/mitra/mitra_model.py +43 -3
  17. autogluon/tabular/models/mitra/sklearn_interface.py +8 -21
  18. autogluon/tabular/models/realmlp/realmlp_model.py +1 -3
  19. autogluon/tabular/models/rf/rf_model.py +5 -1
  20. autogluon/tabular/models/tabicl/tabicl_model.py +1 -7
  21. autogluon/tabular/models/tabm/tabm_model.py +76 -6
  22. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +6 -4
  23. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +1 -7
  24. autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +1 -3
  25. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -1
  26. autogluon/tabular/models/xgboost/xgboost_model.py +8 -1
  27. autogluon/tabular/predictor/predictor.py +63 -55
  28. autogluon/tabular/registry/_ag_model_registry.py +2 -0
  29. autogluon/tabular/testing/fit_helper.py +28 -0
  30. autogluon/tabular/version.py +1 -1
  31. autogluon.tabular-1.4.1b20251128-py3.11-nspkg.pth +1 -0
  32. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/METADATA +87 -71
  33. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/RECORD +39 -33
  34. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/WHEEL +1 -1
  35. autogluon.tabular-1.4.0-py3.9-nspkg.pth +0 -1
  36. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info/licenses}/LICENSE +0 -0
  37. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info/licenses}/NOTICE +0 -0
  38. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/namespace_packages.txt +0 -0
  39. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/top_level.txt +0 -0
  40. {autogluon.tabular-1.4.0.dist-info → autogluon_tabular-1.4.1b20251128.dist-info}/zip-safe +0 -0
@@ -1,11 +1,12 @@
1
- autogluon.tabular-1.4.0-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.1b20251128-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=16If3bcb1Cg5l2nF4vRSHA6o8Nbw7690ibUJPQOlh9g,82
3
+ autogluon/tabular/version.py,sha256=o2ibx9JDxffYcPPTJ0EoXvrDEj6CqbeXY2VjOS3j_WA,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
7
  autogluon/tabular/configs/hyperparameter_configs.py,sha256=aQ1rrF8P0MX4Ic5M33O96JtKV-K7YpDrgJmWhYmEyug,6848
8
- autogluon/tabular/configs/presets_configs.py,sha256=KxZkUU58dxvKeY8g94gdIJkqi2eos68262-efDJVrhY,7755
8
+ autogluon/tabular/configs/pipeline_presets.py,sha256=ccrT3C56pYHW8x8VB_Q9zAu_eCxlgNQpt7TXpVUzDfE,4761
9
+ autogluon/tabular/configs/presets_configs.py,sha256=_C9wTfKVRyoomtYa04RqNyw1CEOYc_5Q3QKejqDp754,7674
9
10
  autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
11
  autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=6yd84vPqOk-6sLCoM_e_PlphrR2NZUjliS7L1SMKMug,29777
11
12
  autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=NXwfqZLQLx4kdvRqF6deFDdhZZKxbfgpUurdB0kqOh8,11996
@@ -17,7 +18,7 @@ autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF6
17
18
  autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
18
19
  autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
19
20
  autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
20
- autogluon/tabular/models/__init__.py,sha256=-Yi0lq_jsMdKTjZkuRvNDeZdC5KRAsOKRNp-v4bcyy4,1216
21
+ autogluon/tabular/models/__init__.py,sha256=grZ23UfuNZ_LxoNdl-yjIUmq71TeovT5CJPhbatiqvg,1252
21
22
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
23
  autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
23
24
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
@@ -26,18 +27,23 @@ autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB
26
27
  autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
27
28
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
29
  autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
29
- autogluon/tabular/models/catboost/catboost_model.py,sha256=08cLCrhSogJSsXlas0_1ZnomatxEGdOjN1WS_NyXOJI,18043
30
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=tAT_eklRJDARJsbS72-Nn8PxLmKgIvffzjjrTI1XMXM,18041
30
31
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
31
32
  autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
32
33
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
34
  autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
34
35
  autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
36
+ autogluon/tabular/models/ebm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
+ autogluon/tabular/models/ebm/ebm_model.py,sha256=PyocCEPxByB-E5gRCZitI5gsP6DVYlxmRx8bbZ31guA,8524
38
+ autogluon/tabular/models/ebm/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
+ autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=IbDv3Ufx8CGHvejqSbAggZKlMq5X9k0Ggclm_DCoiII,1080
40
+ autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=G6zgHERKt_KJlVfZ06tFKw2aOUuM7DdDyCm0s5RBXoc,2191
35
41
  autogluon/tabular/models/fastainn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
42
  autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCLeIXjEelsglYwfofq0,4788
37
43
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
38
44
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
39
45
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
40
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=km-8gM7i_pCYggde0M7xysp3jMn811W-dI0aYK_8o5Y,29541
46
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=FqT6xqhU2XoTWJ0yY_ZmT3JI6ranl63vpdPkn6JFbos,29666
41
47
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
48
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
43
49
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -51,26 +57,26 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
51
57
  autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
52
58
  autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
59
  autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
54
- autogluon/tabular/models/knn/knn_model.py,sha256=qZwBnDVPT2Fd5aDPZqcwugszeUYREm5nZ_-bHVVE3_s,13977
60
+ autogluon/tabular/models/knn/knn_model.py,sha256=I7wPRy38oD03f_3KN7Q_CyoJJucDPrPQyJqjgovmx8Q,14061
55
61
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
56
62
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
57
63
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
58
64
  autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
59
- autogluon/tabular/models/lgb/lgb_model.py,sha256=S1OGVHivJWMTwBnVXlUdFqyOPKK_W8yfFsFynbiDXHU,25855
65
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=kRIcBBIDMJ2inaZeJXO5uhAG0qUigwYseJoFQ7jzqQE,27415
60
66
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
61
67
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
68
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
63
69
  autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
64
70
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
65
- autogluon/tabular/models/lr/lr_model.py,sha256=wTrrTWVwmlAyx4RAxhfXHbkvZTAVIvAiTadpEChGEzc,15599
66
- autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
71
+ autogluon/tabular/models/lr/lr_model.py,sha256=2A6e8Itw-PgjOLjVXeo8bJwFQuVSGYwJNVxhHxFQXlw,15732
72
+ autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=tgb75V6zHfMJh8m9GDs5404ItdfwNakqykTk0qjBtFE,1045
67
73
  autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
68
74
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
69
75
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
70
76
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
71
77
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
- autogluon/tabular/models/mitra/mitra_model.py,sha256=Ugk2-YmMRlo127jTZKNIv2qEqwNby8_nfpSspng7D3o,12253
73
- autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
78
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=TzjozU19zQLU09S2tM8Sfe7TiTBSDDjld-tVt5L1JGQ,13954
79
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=vyg8kkmYKzEJRWiehEqEsgZeOCV20tnZAZaaaJkwDuA,17739
74
80
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
75
81
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
76
82
  autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
@@ -91,27 +97,27 @@ autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGS
91
97
  autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
92
98
  autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
93
99
  autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
94
- autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=TorZsQR7LE5QRq2EAq1iT2asLuuAHpgy-PXXrTMxgSs,25743
100
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=o_S572-nKrhwxmEFaDSTvTLE7KztOvQmARRrc7CIeCY,25783
95
101
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
96
102
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
97
103
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
98
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=DS1fsA6gwQGARBQL5KHpw7ExjRE6He4GJkn0NpGGFy8,14591
104
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=3pe_yhOGW8cbX3KgNs25s3FP0P3FzVSAS-hd4jMFjDg,14573
99
105
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
- autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
106
+ autogluon/tabular/models/rf/rf_model.py,sha256=smL9Ifi94lGjAmFUTRXUxbj7gdvmVteS_ePiJbj0wSk,21762
101
107
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
102
108
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
103
109
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
104
110
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
105
111
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
106
112
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=je647L7pFFm8q3Lnl_d7hDPCDIvEkeCiMvBHv6sTDMU,6461
113
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=_Eq3g9babdC17kyvAA0rIqtZEtiRGwM2XngkbWevXpU,6283
108
114
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
109
115
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
110
116
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
111
- autogluon/tabular/models/tabm/tabm_model.py,sha256=ZWQFNmgsj2pK0-0E_8CXpD-T9AkKyGQWq4npuyLgVcc,10458
117
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=_SGc7R87ug9m8KGd_BgC9maJ7sjOAlYB9vtg1omwOto,13640
112
118
  autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
113
119
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
114
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=fZAkiKojjVyLhukH16oOwFpf3v3vRF0XEDGvZDy1zjQ,16304
120
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=NAuV3rJia-UNnFwiFU5tkz6vzZ2lokQ_12vUJ3E6wAA,16498
115
121
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
122
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
117
123
  autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
@@ -137,7 +143,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
137
143
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
138
144
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
139
145
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
140
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=ykE0KGO9tH0RhMLXXjgp1gJ4cKkk7BTLr_rjNnjzT7c,14999
146
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=nXZcq4SMV54dciOKFM57Suc9eVyXQXy-2iN6moRt2b8,14801
141
147
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
142
148
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
143
149
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -150,10 +156,10 @@ autogluon/tabular/models/tabular_nn/compilers/__init__.py,sha256=47DEQpj8HBSa-_T
150
156
  autogluon/tabular/models/tabular_nn/compilers/native.py,sha256=W8d8cqBj7U-KVhfGK3hdtGj8JJm3lXr_SecU0615Gbs,1330
151
157
  autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=3mj9_5p6YMOuKbYk7FBQ2Ijhm1kGzfqq6cyyKLUKLOo,14804
152
158
  autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
153
- autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
159
+ autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
154
160
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
155
161
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
156
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=zO2-3oe3T4QgPQCSirXzo8QxrHPqTln39CwbgwXDtsk,43016
162
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=s76Ca8Vgr65gsjCbU_W8A4o6wk7GHcOerQc5XL9ftTU,43070
157
163
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
158
164
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
159
165
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -164,7 +170,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
164
170
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
165
171
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
166
172
  autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
167
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=MCzZv3ty2p7N9-4qGPaCUha2VnLBm-vY2KA23Xny0ag,15235
173
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=tKVLvBnuTbDaFwBRVDZ5ADo4PjBF2FDR93Ib86WYTMM,15630
168
174
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
169
175
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
170
176
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
@@ -173,12 +179,12 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
173
179
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
174
180
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
175
181
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
176
- autogluon/tabular/predictor/predictor.py,sha256=akgjBQMpyuuvxSGDhaTccJmYhqA8dKYFKNmn88c8VIg,360587
182
+ autogluon/tabular/predictor/predictor.py,sha256=fjw7CQALXZ7AR18ryLm4xWwDzRBeUnrmNubPS8U_pmQ,361223
177
183
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
178
- autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
184
+ autogluon/tabular/registry/_ag_model_registry.py,sha256=2Zx5qxXvOdXIbL1FKslNh2M_JM2YG_7GvsCMFF11wDY,1578
179
185
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
180
186
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
181
- autogluon/tabular/testing/fit_helper.py,sha256=0eTvPtqM8k8hlOUIHQiwTzik4juTjHQt12BySk0klt4,19816
187
+ autogluon/tabular/testing/fit_helper.py,sha256=pj3P0ENMDhr04laxsLL0_IDX-8msMFo9Wn5XSLFCaqI,21092
182
188
  autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
183
189
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
184
190
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
@@ -189,11 +195,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
189
195
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
190
196
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
191
197
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
192
- autogluon.tabular-1.4.0.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
- autogluon.tabular-1.4.0.dist-info/METADATA,sha256=-Qnhh6Alx9-CPqs-KRUuEbQxtjPyhwxDBqfxAKI87hc,16046
194
- autogluon.tabular-1.4.0.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
- autogluon.tabular-1.4.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
- autogluon.tabular-1.4.0.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.4.0.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
- autogluon.tabular-1.4.0.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
- autogluon.tabular-1.4.0.dist-info/RECORD,,
198
+ autogluon_tabular-1.4.1b20251128.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
199
+ autogluon_tabular-1.4.1b20251128.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
200
+ autogluon_tabular-1.4.1b20251128.dist-info/METADATA,sha256=nfjp5O1DhRltAy5GwDyvbauYM7iey7CQRfDOGjuPlvs,16854
201
+ autogluon_tabular-1.4.1b20251128.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
202
+ autogluon_tabular-1.4.1b20251128.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
203
+ autogluon_tabular-1.4.1b20251128.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
204
+ autogluon_tabular-1.4.1b20251128.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
205
+ autogluon_tabular-1.4.1b20251128.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.1)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1 +0,0 @@
1
- import sys, types, os;has_mfs = sys.version_info > (3, 5);p = os.path.join(sys._getframe(1).f_locals['sitedir'], *('autogluon',));importlib = has_mfs and __import__('importlib.util');has_mfs and __import__('importlib.machinery');m = has_mfs and sys.modules.setdefault('autogluon', importlib.util.module_from_spec(importlib.machinery.PathFinder.find_spec('autogluon', [os.path.dirname(p)])));m = m or sys.modules.setdefault('autogluon', types.ModuleType('autogluon'));mp = (m or []) and m.__dict__.setdefault('__path__',[]);(p not in mp) and mp.append(p)