autogluon.tabular 1.3.2b20250722__py3-none-any.whl → 1.4.0b20250724__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (26) hide show
  1. autogluon/tabular/configs/hyperparameter_configs.py +2 -265
  2. autogluon/tabular/configs/presets_configs.py +47 -21
  3. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -1
  4. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +309 -0
  5. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +18 -6
  6. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +8 -4
  7. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +5 -1
  8. autogluon/tabular/models/mitra/_internal/models/tab2d.py +3 -0
  9. autogluon/tabular/models/mitra/mitra_model.py +72 -21
  10. autogluon/tabular/models/mitra/sklearn_interface.py +15 -13
  11. autogluon/tabular/models/tabicl/tabicl_model.py +3 -3
  12. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +3 -0
  13. autogluon/tabular/models/tabm/tabm_reference.py +2 -0
  14. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +15 -6
  15. autogluon/tabular/predictor/predictor.py +41 -1
  16. autogluon/tabular/trainer/abstract_trainer.py +2 -0
  17. autogluon/tabular/version.py +1 -1
  18. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/METADATA +37 -15
  19. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/RECORD +26 -25
  20. /autogluon.tabular-1.3.2b20250722-py3.9-nspkg.pth → /autogluon.tabular-1.4.0b20250724-py3.9-nspkg.pth +0 -0
  21. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/LICENSE +0 -0
  22. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/NOTICE +0 -0
  23. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/WHEEL +0 -0
  24. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/namespace_packages.txt +0 -0
  25. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/top_level.txt +0 -0
  26. {autogluon.tabular-1.3.2b20250722.dist-info → autogluon.tabular-1.4.0b20250724.dist-info}/zip-safe +0 -0
@@ -1,3 +1,6 @@
1
+ from __future__ import annotations
2
+
3
+ import os
1
4
  import time
2
5
  from pathlib import Path
3
6
  import contextlib
@@ -76,6 +79,7 @@ class MitraBase(BaseEstimator):
76
79
  random_mirror_regression=RANDOM_MIRROR_REGRESSION,
77
80
  random_mirror_x=RANDOM_MIRROR_X,
78
81
  seed=SEED,
82
+ verbose=True,
79
83
  ):
80
84
  """
81
85
  Initialize the base Mitra model.
@@ -114,8 +118,11 @@ class MitraBase(BaseEstimator):
114
118
  self.trainers = []
115
119
  self.train_time = 0
116
120
  self.seed = seed
121
+ self.verbose = verbose
117
122
 
118
- set_seed(self.seed)
123
+ # FIXME: set_seed was removed in v1.4 as quality and speed reduction was observed when setting seed.
124
+ # This should be investigated and fixed for v1.5
125
+ # set_seed(self.seed)
119
126
 
120
127
  def _create_config(self, task, dim_output, time_limit=None):
121
128
  cfg = ConfigRun(
@@ -183,6 +190,7 @@ class MitraBase(BaseEstimator):
183
190
  """Train the ensemble of models."""
184
191
 
185
192
  cfg, Tab2D = self._create_config(task, dim_output, time_limit)
193
+ rng = np.random.RandomState(cfg.seed)
186
194
 
187
195
  success = False
188
196
  while not (success and cfg.hyperparams["max_samples_support"] > 0 and cfg.hyperparams["max_samples_query"] > 0):
@@ -217,7 +225,7 @@ class MitraBase(BaseEstimator):
217
225
  path_to_weights=Path(self.state_dict),
218
226
  device=self.device,
219
227
  )
220
- trainer = TrainerFinetune(cfg, model, n_classes=n_classes, device=self.device)
228
+ trainer = TrainerFinetune(cfg, model, n_classes=n_classes, device=self.device, rng=rng, verbose=self.verbose)
221
229
 
222
230
  start_time = time.time()
223
231
  trainer.train(X_train, y_train, X_valid, y_valid)
@@ -275,6 +283,7 @@ class MitraClassifier(MitraBase, ClassifierMixin):
275
283
  random_mirror_regression=RANDOM_MIRROR_REGRESSION,
276
284
  random_mirror_x=RANDOM_MIRROR_X,
277
285
  seed=SEED,
286
+ verbose=True,
278
287
  ):
279
288
  """Initialize the classifier."""
280
289
  super().__init__(
@@ -294,6 +303,7 @@ class MitraClassifier(MitraBase, ClassifierMixin):
294
303
  random_mirror_regression=random_mirror_regression,
295
304
  random_mirror_x=random_mirror_x,
296
305
  seed=seed,
306
+ verbose=verbose,
297
307
  )
298
308
  self.task = 'classification'
299
309
 
@@ -403,6 +413,7 @@ class MitraRegressor(MitraBase, RegressorMixin):
403
413
  random_mirror_regression=RANDOM_MIRROR_REGRESSION,
404
414
  random_mirror_x=RANDOM_MIRROR_X,
405
415
  seed=SEED,
416
+ verbose=True,
406
417
  ):
407
418
  """Initialize the regressor."""
408
419
  super().__init__(
@@ -422,6 +433,7 @@ class MitraRegressor(MitraBase, RegressorMixin):
422
433
  random_mirror_regression=random_mirror_regression,
423
434
  random_mirror_x=random_mirror_x,
424
435
  seed=seed,
436
+ verbose=verbose,
425
437
  )
426
438
  self.task = 'regression'
427
439
 
@@ -492,14 +504,4 @@ class MitraRegressor(MitraBase, RegressorMixin):
492
504
  @contextlib.contextmanager
493
505
  def mitra_deterministic_context():
494
506
  """Context manager to set deterministic settings only for Mitra operations."""
495
-
496
- original_deterministic_algorithms_set = False
497
-
498
- try:
499
- torch.use_deterministic_algorithms(True)
500
- original_deterministic_algorithms_set = True
501
- yield
502
-
503
- finally:
504
- if original_deterministic_algorithms_set:
505
- torch.use_deterministic_algorithms(False)
507
+ yield
@@ -98,8 +98,8 @@ class TabICLModel(AbstractModel):
98
98
  default_auxiliary_params = super()._get_default_auxiliary_params()
99
99
  default_auxiliary_params.update(
100
100
  {
101
- "max_rows": 100000,
102
- "max_features": 500,
101
+ "max_rows": 30000,
102
+ "max_features": 2000,
103
103
  }
104
104
  )
105
105
  return default_auxiliary_params
@@ -147,7 +147,7 @@ class TabICLModel(AbstractModel):
147
147
  model_mem_estimate *= 1.3 # add 30% buffer
148
148
 
149
149
  # TODO: Observed memory spikes above expected values on large datasets, increasing mem estimate to compensate
150
- model_mem_estimate *= 1.5
150
+ model_mem_estimate *= 2.0 # Note: 1.5 is not large enough, still gets OOM
151
151
 
152
152
  mem_estimate = model_mem_estimate + dataset_size_mem_est + baseline_overhead_mem_est
153
153
 
@@ -1,6 +1,8 @@
1
1
  # taken from https://github.com/yandex-research/rtdl-num-embeddings/blob/main/package/rtdl_num_embeddings.py
2
2
  """On Embeddings for Numerical Features in Tabular Deep Learning."""
3
3
 
4
+ from __future__ import annotations
5
+
4
6
  __version__ = '0.0.12'
5
7
 
6
8
  __all__ = [
@@ -12,6 +14,7 @@ __all__ = [
12
14
  'compute_bins',
13
15
  ]
14
16
 
17
+
15
18
  import math
16
19
  import warnings
17
20
  from typing import Any, Literal, Optional, Union
@@ -3,6 +3,8 @@
3
3
  # NOTE
4
4
  # The minimum required versions of the dependencies are specified in README.md.
5
5
 
6
+ from __future__ import annotations
7
+
6
8
  import itertools
7
9
  from typing import Any, Literal, Union
8
10
 
@@ -119,12 +119,14 @@ class TabPFNV2Model(AbstractModel):
119
119
  super().__init__(**kwargs)
120
120
  self._feature_generator = None
121
121
  self._cat_features = None
122
+ self._cat_indices = None
122
123
 
123
124
  def _preprocess(self, X: pd.DataFrame, is_train=False, **kwargs) -> pd.DataFrame:
124
125
  X = super()._preprocess(X, **kwargs)
125
- self._cat_indices = []
126
126
 
127
127
  if is_train:
128
+ self._cat_indices = []
129
+
128
130
  # X will be the training data.
129
131
  self._feature_generator = LabelEncoderFeatureGenerator(verbosity=0)
130
132
  self._feature_generator.fit(X=X)
@@ -136,10 +138,11 @@ class TabPFNV2Model(AbstractModel):
136
138
  X=X
137
139
  )
138
140
 
139
- # Detect/set cat features and indices
140
- if self._cat_features is None:
141
- self._cat_features = self._feature_generator.features_in[:]
142
- self._cat_indices = [X.columns.get_loc(col) for col in self._cat_features]
141
+ if is_train:
142
+ # Detect/set cat features and indices
143
+ if self._cat_features is None:
144
+ self._cat_features = self._feature_generator.features_in[:]
145
+ self._cat_indices = [X.columns.get_loc(col) for col in self._cat_features]
143
146
 
144
147
  return X
145
148
 
@@ -187,6 +190,12 @@ class TabPFNV2Model(AbstractModel):
187
190
  # logs "Built with PriorLabs-TabPFN"
188
191
  self._log_license(device=device)
189
192
 
193
+ if num_gpus == 0:
194
+ logger.log(
195
+ 30,
196
+ f"\tWARNING: Running TabPFNv2 on CPU. This can be very slow. We recommend using a GPU instead."
197
+ )
198
+
190
199
  X = self.preprocess(X, is_train=True)
191
200
 
192
201
  hps = self._get_model_params()
@@ -366,7 +375,7 @@ class TabPFNV2Model(AbstractModel):
366
375
 
367
376
  # Add some buffer to each term + 1 GB overhead to be safe
368
377
  return int(
369
- model_mem + 4 * X_mem + 1.5 * activation_mem + baseline_overhead_mem_est
378
+ model_mem + 4 * X_mem + 2 * activation_mem + baseline_overhead_mem_est
370
379
  )
371
380
 
372
381
  @classmethod
@@ -1068,7 +1068,7 @@ class TabularPredictor:
1068
1068
  20,
1069
1069
  "No presets specified! To achieve strong results with AutoGluon, it is recommended to use the available presets. Defaulting to `'medium'`...\n"
1070
1070
  "\tRecommended Presets (For more details refer to https://auto.gluon.ai/stable/tutorials/tabular/tabular-essentials.html#presets):\n"
1071
- "\tpresets='experimental' : New in v1.2: Pre-trained foundation model + parallel fits. The absolute best accuracy without consideration for inference speed. Does not support GPU.\n"
1071
+ "\tpresets='experimental' : New in v1.4: Massively better than 'best' on datasets <10000 samples by using new models: TabPFNv2, TabICL, Mitra, and TabM. Absolute best accuracy. Requires a GPU. Recommended 64 GB CPU memory and 32+ GB GPU memory.\n"
1072
1072
  "\tpresets='best' : Maximize accuracy. Recommended for most users. Use in competitions and benchmarks.\n"
1073
1073
  "\tpresets='high' : Strong accuracy with fast inference speed.\n"
1074
1074
  "\tpresets='good' : Good accuracy with very fast inference speed.\n"
@@ -1127,10 +1127,48 @@ class TabularPredictor:
1127
1127
  )
1128
1128
  infer_limit, infer_limit_batch_size = self._validate_infer_limit(infer_limit=infer_limit, infer_limit_batch_size=infer_limit_batch_size)
1129
1129
 
1130
+ # TODO: Temporary for v1.4. Make this more extensible for v1.5 by letting users make their own dynamic hyperparameters.
1131
+ dynamic_hyperparameters = kwargs["_experimental_dynamic_hyperparameters"]
1132
+ if dynamic_hyperparameters:
1133
+ logger.log(20, f"Experimental preset uses a dynamic portfolio based on dataset size...")
1134
+ assert hyperparameters is None, f"hyperparameters must be unspecified when `_experimental_dynamic_hyperparameters=True`."
1135
+ n_samples = len(train_data)
1136
+ if n_samples > 30000:
1137
+ data_size = "large"
1138
+ else:
1139
+ data_size = "small"
1140
+ assert data_size in ["large", "small"]
1141
+ if data_size == "large":
1142
+ logger.log(20, f"\tDetected data size: large (>30000 samples), using `zeroshot` portfolio (identical to 'best_quality' preset).")
1143
+ hyperparameters = "zeroshot"
1144
+ else:
1145
+ if "num_stack_levels" not in kwargs_orig:
1146
+ # disable stacking for tabfm portfolio
1147
+ num_stack_levels = 0
1148
+ kwargs["num_stack_levels"] = 0
1149
+ logger.log(
1150
+ 20,
1151
+ f"\tDetected data size: small (<=30000 samples), using `zeroshot_2025_tabfm` portfolio."
1152
+ f"\n\t\tNote: `zeroshot_2025_tabfm` portfolio requires a CUDA compatible GPU for best performance."
1153
+ f"\n\t\tMake sure you have all the relevant dependencies installed: "
1154
+ f"`pip install autogluon.tabular[tabarena]`."
1155
+ f"\n\t\tIt is strongly recommended to use a machine with 64+ GB memory "
1156
+ f"and a CUDA compatible GPU with 32+ GB vRAM when using this preset. "
1157
+ f"\n\t\tThis portfolio will download foundation model weights from HuggingFace during training. "
1158
+ f"Ensure you have an internet connection or have pre-downloaded the weights to use these models."
1159
+ f"\n\t\tThis portfolio was meta-learned with TabArena: https://tabarena.ai"
1160
+ )
1161
+ hyperparameters = "zeroshot_2025_tabfm"
1162
+
1130
1163
  if hyperparameters is None:
1131
1164
  hyperparameters = "default"
1132
1165
  if isinstance(hyperparameters, str):
1166
+ hyperparameters_str = hyperparameters
1133
1167
  hyperparameters = get_hyperparameter_config(hyperparameters)
1168
+ logger.log(
1169
+ 20,
1170
+ f"Using hyperparameters preset: hyperparameters='{hyperparameters_str}'",
1171
+ )
1134
1172
  self._validate_hyperparameters(hyperparameters=hyperparameters)
1135
1173
  self.fit_hyperparameters_ = hyperparameters
1136
1174
 
@@ -5042,6 +5080,8 @@ class TabularPredictor:
5042
5080
  learning_curves=False,
5043
5081
  test_data=None,
5044
5082
  raise_on_model_failure=False,
5083
+ # experimental
5084
+ _experimental_dynamic_hyperparameters=False,
5045
5085
  )
5046
5086
  kwargs, ds_valid_keys = self._sanitize_dynamic_stacking_kwargs(kwargs)
5047
5087
  kwargs = self._validate_fit_extra_kwargs(kwargs, extra_valid_keys=list(fit_kwargs_default.keys()) + ds_valid_keys)
@@ -2131,6 +2131,8 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
2131
2131
  if isinstance(model, BaggedEnsembleModel) and not compute_score:
2132
2132
  # Do not perform OOF predictions when we don't compute a score.
2133
2133
  model_fit_kwargs["_skip_oof"] = True
2134
+ if not isinstance(model, BaggedEnsembleModel):
2135
+ model_fit_kwargs.setdefault("log_resources", True)
2134
2136
 
2135
2137
  model_fit_kwargs = dict(
2136
2138
  model=model,
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250722"
3
+ __version__ = "1.4.0b20250724"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250722
3
+ Version: 1.4.0b20250724
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,20 +41,22 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.2b20250722
45
- Requires-Dist: autogluon.features==1.3.2b20250722
44
+ Requires-Dist: autogluon.core==1.4.0b20250724
45
+ Requires-Dist: autogluon.features==1.4.0b20250724
46
46
  Provides-Extra: all
47
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
47
+ Requires-Dist: transformers; extra == "all"
48
48
  Requires-Dist: huggingface-hub[torch]; extra == "all"
49
- Requires-Dist: spacy<3.9; extra == "all"
50
49
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
51
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
52
- Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
53
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
54
- Requires-Dist: autogluon.core[all]==1.3.2b20250722; extra == "all"
50
+ Requires-Dist: autogluon.core[all]==1.4.0b20250724; extra == "all"
51
+ Requires-Dist: spacy<3.9; extra == "all"
55
52
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
56
53
  Requires-Dist: torch<2.8,>=2.2; extra == "all"
54
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
55
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
56
+ Requires-Dist: loguru; extra == "all"
57
+ Requires-Dist: einx; extra == "all"
57
58
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
59
+ Requires-Dist: omegaconf; extra == "all"
58
60
  Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
59
61
  Provides-Extra: catboost
60
62
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
@@ -72,9 +74,11 @@ Provides-Extra: mitra
72
74
  Requires-Dist: loguru; extra == "mitra"
73
75
  Requires-Dist: einx; extra == "mitra"
74
76
  Requires-Dist: omegaconf; extra == "mitra"
77
+ Requires-Dist: torch<2.8,>=2.2; extra == "mitra"
75
78
  Requires-Dist: transformers; extra == "mitra"
79
+ Requires-Dist: huggingface-hub[torch]; extra == "mitra"
76
80
  Provides-Extra: ray
77
- Requires-Dist: autogluon.core[all]==1.3.2b20250722; extra == "ray"
81
+ Requires-Dist: autogluon.core[all]==1.4.0b20250724; extra == "ray"
78
82
  Provides-Extra: realmlp
79
83
  Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
80
84
  Provides-Extra: skex
@@ -85,6 +89,24 @@ Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
85
89
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
86
90
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
87
91
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
92
+ Provides-Extra: tabarena
93
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
94
+ Requires-Dist: transformers; extra == "tabarena"
95
+ Requires-Dist: huggingface-hub[torch]; extra == "tabarena"
96
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "tabarena"
97
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
98
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
99
+ Requires-Dist: autogluon.core[all]==1.4.0b20250724; extra == "tabarena"
100
+ Requires-Dist: spacy<3.9; extra == "tabarena"
101
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
102
+ Requires-Dist: torch<2.8,>=2.2; extra == "tabarena"
103
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
104
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
105
+ Requires-Dist: loguru; extra == "tabarena"
106
+ Requires-Dist: einx; extra == "tabarena"
107
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
108
+ Requires-Dist: omegaconf; extra == "tabarena"
109
+ Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
88
110
  Provides-Extra: tabicl
89
111
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
90
112
  Provides-Extra: tabm
@@ -96,16 +118,16 @@ Requires-Dist: torch<2.8,>=2.2; extra == "tabpfnmix"
96
118
  Requires-Dist: huggingface-hub[torch]; extra == "tabpfnmix"
97
119
  Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
98
120
  Provides-Extra: tests
121
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
99
122
  Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
123
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "tests"
124
+ Requires-Dist: torch<2.8,>=2.2; extra == "tests"
125
+ Requires-Dist: huggingface-hub[torch]; extra == "tests"
126
+ Requires-Dist: einops<0.9,>=0.7; extra == "tests"
100
127
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
101
128
  Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
102
129
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
103
130
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
104
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
105
- Requires-Dist: loguru; extra == "tests"
106
- Requires-Dist: einx; extra == "tests"
107
- Requires-Dist: omegaconf; extra == "tests"
108
- Requires-Dist: transformers; extra == "tests"
109
131
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
110
132
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
111
133
  Provides-Extra: xgboost
@@ -1,13 +1,14 @@
1
- autogluon.tabular-1.3.2b20250722-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.4.0b20250724-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=CdIaQfJPPjnE9mEFR_3W2YJdiCuNqvKW-cgu00I6i3w,91
3
+ autogluon/tabular/version.py,sha256=sQbAMP9TVXNv7nE2ealK-zzy0cZUUxkxcLTpbykHhxU,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
- autogluon/tabular/configs/hyperparameter_configs.py,sha256=hp8J7g5GY3Couz929f1ItawobCw-isLTZJBcLoJY348,18035
8
- autogluon/tabular/configs/presets_configs.py,sha256=2Jlq1X9sVmVlyUxWsZpDV7ma2TncH5Y2HXDML7x2gYc,6810
7
+ autogluon/tabular/configs/hyperparameter_configs.py,sha256=aQ1rrF8P0MX4Ic5M33O96JtKV-K7YpDrgJmWhYmEyug,6848
8
+ autogluon/tabular/configs/presets_configs.py,sha256=hIT9CgdIol5y-YLKrcupXWySP_P9HZp_ky_vXmFrFWk,7682
9
9
  autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=oKO_2nEpI_EiLaUGmNN-3kPBIp5ATndbCOaVZ1m0048,29911
10
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=6yd84vPqOk-6sLCoM_e_PlphrR2NZUjliS7L1SMKMug,29777
11
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=1EH54KvJT35xNVegh1SuvBWt0Qx07vQUdHyc10TwaOI,11966
11
12
  autogluon/tabular/experimental/__init__.py,sha256=PpkdMSv_pPZted1XRIuzcFWKjM-66VMUukTnCcoiW0s,100
12
13
  autogluon/tabular/experimental/_scikit_mixin.py,sha256=cKeCmtURAXZnhQGrkCBw5rmACCQF7biAWTT3qX8bM2Q,2281
13
14
  autogluon/tabular/experimental/_tabular_classifier.py,sha256=7lGoFdvkHiZS3VpcXo97q4ENV9qyIVDExlWkm0wzL3s,2527
@@ -68,8 +69,8 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
68
69
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
70
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
71
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/mitra/mitra_model.py,sha256=SQehZMs9WBP9o51CJ6L8njuEq0UcunXbbOM3eedhokw,10263
72
- autogluon/tabular/models/mitra/sklearn_interface.py,sha256=p3keXfA3cdQhoT24jAytrC1uHOK8tQXpE2tSWagAQzU,18588
72
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=ha-54y_LgEysUpcPr7dB76fETu9kEQ2oLUXteGYVVeE,11927
73
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Znwx1uMagauu1DwcutM_kgGY8maQrxOE0KsP1uS46qE,18751
73
74
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
74
75
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
75
76
  autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
@@ -81,16 +82,16 @@ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5P
81
82
  autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
82
83
  autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
83
84
  autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
84
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=LWw60of990QFYKAmKZJytERjj5_m1sveYyRFqPcb6DE,17527
85
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=tI8sN9mv3PtEBdmDxcBgzderZ7YQdtn6MxtOWAc8or8,17908
85
86
  autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
86
87
  autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
87
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=M2QbXjnb5b4CK5qBthWa7bGvsi8Ox8cz_D0u7tBD4Mo,4232
88
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=xpG62WFjg9NTqukKSJx3byq-SFqhxgpIG4jwIl1YuEc,1929
88
+ autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=AYxyQ1NJZ3pAp6ny-Y_hqw_4VtyW5X1AABchf7pVsSM,4340
89
+ autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=0uvfyiKrzipde4ZcCDwTE1E3zHelE8xbuNvCeL38J5c,2033
89
90
  autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGSSawPaj7ieRjFOtct_Fyh8LYjo_YtlNG0,13821
90
91
  autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
91
92
  autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
92
93
  autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
93
- autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=w73QQrXZA7m2fdEPpJDVx-XVZK8xWdc_Q1F38uAZiZA,25690
94
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=TorZsQR7LE5QRq2EAq1iT2asLuuAHpgy-PXXrTMxgSs,25743
94
95
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
95
96
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
96
97
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -103,12 +104,12 @@ autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
103
104
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
104
105
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
105
106
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=bOCOW2E2bcWQRik2gmebKDEzevswQO_3WAF0JVX-Sis,6038
107
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=ovytUwFdqpVelEp1cDhHczWQkG72icAnuXTW6GdBi_8,6087
107
108
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
109
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
109
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
110
+ autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
110
111
  autogluon/tabular/models/tabm/tabm_model.py,sha256=IQ4RHM1wnf9GHuEa1zDO_yWUPfmh5xUMEVtQ4EFeQRI,10152
111
- autogluon/tabular/models/tabm/tabm_reference.py,sha256=sZt1LGdifDfJyauVb8wBs9h6lXZJVe0fz0v6oIjXw5A,21908
112
+ autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
112
113
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
114
  autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
114
115
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -136,7 +137,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
136
137
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
138
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
138
139
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
139
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dqjDUpIKQ-SIvbeaDVTq1LfmH4iJ1qRVKpb5_ZMM6oE,14296
140
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=e3M_JM92ebbOAk4raZSgrWxaVkGlbbMedlHJVmyXfJ4,14570
140
141
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
141
142
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
142
143
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -172,7 +173,7 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
172
173
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
173
174
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
174
175
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
175
- autogluon/tabular/predictor/predictor.py,sha256=cjszntXs6k5BZMOaLGaMiC1e2sGkCsnXrH9rVI972-0,356548
176
+ autogluon/tabular/predictor/predictor.py,sha256=E4Z_2V0T3tBNuH8dxCm1pDpGkyGDs7rEgDE1SKOy0ow,359075
176
177
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
177
178
  autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
178
179
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
@@ -181,18 +182,18 @@ autogluon/tabular/testing/fit_helper.py,sha256=0eTvPtqM8k8hlOUIHQiwTzik4juTjHQt1
181
182
  autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
182
183
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
183
184
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
184
- autogluon/tabular/trainer/abstract_trainer.py,sha256=8uP3DNJCgmQuDWG0zGJnSNrMCVyMbe8mm11hA8GSP98,232409
185
+ autogluon/tabular/trainer/abstract_trainer.py,sha256=9FiBqOV2h8era6KfydFSqhTlh7RnHkvlvzqsZuij7nE,232527
185
186
  autogluon/tabular/trainer/auto_trainer.py,sha256=ZQgQKFT1iHzzun5o5ojdq5pSQmr9ctTkNhe2r9OPOr0,8731
186
187
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
187
188
  autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju1OWi7EJwHay4jjljqt_E0,16546
188
189
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
189
190
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
190
191
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
191
- autogluon.tabular-1.3.2b20250722.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
192
- autogluon.tabular-1.3.2b20250722.dist-info/METADATA,sha256=wtSNYXyA4ratSdv6547JHxGPrJOyU8Xq-8j8hFhZcho,14875
193
- autogluon.tabular-1.3.2b20250722.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
194
- autogluon.tabular-1.3.2b20250722.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
195
- autogluon.tabular-1.3.2b20250722.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
196
- autogluon.tabular-1.3.2b20250722.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.3.2b20250722.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
198
- autogluon.tabular-1.3.2b20250722.dist-info/RECORD,,
192
+ autogluon.tabular-1.4.0b20250724.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
193
+ autogluon.tabular-1.4.0b20250724.dist-info/METADATA,sha256=N8GqPqMCIoGwOwmffPt1scTY3FPCZdP3f3uds0Nm8PI,16071
194
+ autogluon.tabular-1.4.0b20250724.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
195
+ autogluon.tabular-1.4.0b20250724.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
196
+ autogluon.tabular-1.4.0b20250724.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.4.0b20250724.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
198
+ autogluon.tabular-1.4.0b20250724.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
199
+ autogluon.tabular-1.4.0b20250724.dist-info/RECORD,,